The bridgmanite–akimotoite–majorite (Bm–Ak–Mj or BAM) triple point in MgSiO3 has been measured in large-volume press (LVP; COMPRES 8/3 assembly) and laser-heated diamond anvil cell (LHDAC). For the LVP data, we calculated pressures from the calibration provided for the assembly. For the LHDAC data, we conducted in situ determination of pressure at high temperature using the Pt scale at synchrotron. The measured temperatures of the triple point are in good agreement between LVP and LHDAC at 1990–2000 K. However, the pressure for the triple point determined from the LVP is 3.9 ± 0.6 GPa lower than that from the LHDAC dataset. The BAM triple point determined through these experiments will provide an important reference point in the pressure–temperature space for future high-pressure experiments and will allow mineral physicists to compare the pressure–temperature conditions measured in these two different experimental methods.
<p>In situ measurement of solid-state deformation in a large volume press has historically required use of neutron and x-ray scattering facilities. The lack of widespread availability of these facilities has limited the abilities of researchers to measure in situ deformations on a regular basis. We have developed an assembly that utilizes a piezoelectric crystal within a typical large volume press assembly in a 6-axis press at pressures up to 5 GPa. The basic design of the assembly can be applied&#160;to multiple assembly sizes for a wide range of possible pressures. The piezoelectric crystal is a round disk, <1 mm in diameter, that is sputter coated with Au. Copper wires are placed through drilled holes in the side of the assembly, one connected to each side of the disk. The crystal generates a voltage across the two faces when a deviatoric stress is applied that is measured and plotted in real-time during the experiments. The voltage is then used to calculate strain and strain-rate in uniaxial compression. Using the known equation of state of the piezoelectric crystal, such as quartz or gallium orthophosphate, the stresses responsible for the strain can be calculated. Thus, we can measure the stress and strain regime of simple deformation within an assembly in situ in real-time during the deformation. We have measured strain-rates as low as 10<sup>-7 </sup>s<sup>-1 </sup>over a greater than 30-minute timescale. The total strain on the assembly can be measured by the total distance advanced by the press piston, which must be accommodated. Comparing the differences in strain accommodated by the piezoelectric crystal between separate experiments allows us to infer the strain accommodated by the sample under investigation.</p><p>Current limitations in measuring lower strain-rates are charge-leakage around the piezoelectric crystal causing a voltage drift during measurements and limitations in high-temperature experiments due to phase transitions during heating in the piezoelectric crystals to phases that are not piezoelectric. Future work will concentrate on finding a suitable, high-resistance material to place around the piezoelectric crystal to limit charge leakage and designing the assembly such that the piezoelectric crystal experiences lower temperature during heating than the sample to avoid phase transitions in the crystal.</p>
The akimotoite--majorite--bridgmanite (Ak--Mj--Bm) triple point in MgSiO3 has been measured in large-volume press (LVP; COMPRES 8/3 assembly) and laser-heated diamond anvil cell (LHDAC). For the LVP data, we calculated pressures from the calibration by Leinenweber (2012). For the LHDAC data, we conducted \textit{in situ} determination of pressure at high temperature using the Pt scale by Dorogokupets and Dewaele (2007) at synchrotron. The measured temperatures of the triple point are in good agreement between LVP and LHDAC at 1990-2000 K. However, the pressure for the triple point determined from the LVP is 3.9+/-0.6~GPa lower than that from the LHDAC dataset. The triple point determined through these experiments will provide an important reference point in the pressure-temperature space for future high-pressure experiments and allow mineral physicists to compare the pressure--temperature conditions measured in these two different experimental methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.