Estimation of the axial capacity of piles driven into sand involves considerable uncertainty, and design rules are generally not consistent with the physical processes involved. This Paper reviews current understanding of the factors that determine the axial capacity of piles driven into sand, and outlines a new framework for design which takes account of the physical processes, is consistent with the existing database of load test results, and is sufficiently flexible to permit refinement as new data become available. It allows for the effects of confining stress on the frictional and compressibility characteristics of sand, and hence on endbearing capacity. In keeping with field observations, shaft friction is assumed to degrade with driving of the pile past a particular location, from an initial maximum value linked to the local end-bearing capacity. The resulting design approach is compared with field data, and effects of factors such as the direction of loading are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.