In order to accelerate the construction of bridge substructure, a socket joint construction that does not require interfaces roughening between the precast columns and the reserved cavity of the precast foundation is raised in this paper. The seismic performance of such fabricated bridge piers was investigated by carrying quasistatic tests on socket circular pier specimens of different embedment depths with a compared cast-in-place pier specimen. The experimental results showed that the prefabricated piers with the embedment length larger than 1.0 times the column diameter, featuring smooth interfaces that was free of roughening, had a failure mode of bending damage as well as the cast-in-place component. As the embedment depth increases, the seismic performance indexes of the socket bridge pier, including bearing capacity, ductility, and energy dissipation capacity, are improved. The seismic performance indexes of a socket bridge pier specimen with an embedment depth of 1.5 times the column’s diameter in the test are better than the cast-in-place one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.