may act indirectly to promote GFAP expression. We provide evidence that this indirect effect may be mediated via induction of immediate early genes and the transcription factor Sp1 by demonstrating that these transcriptional regulators are induced by BMP2 and contribute to GFAP promoter activity. These findings demonstrate new roles for intracellular kinase pathways in mediating the effects of BMPs during the early stages of glial differentiation and suggest that differential contributions by signaling and transcriptional networks may contribute to the range of effects of BMPs on neuronal and glial development during the formation of the peripheral nervous system.
Bone morphogenetic proteins (BMPs) regulate developmental decisions in many neural and nonneural lineages. BMPs influence both CNS neuronal and glial development and promote neuronal differentiation in neural crest derivatives. We investigated the actions of BMP2 on glial differentiation in the peripheral nervous system using NCM1 cells, a neural crest-derived cell line with the properties of peripheral glial precursor cells. BMP2 prevented the acquisition of a mature Schwann cell-like morphology, blocking the expression of mature genes and maintaining expression of several early glial markers. We provide evidence that BMP2 activates the GFAP promoter and define signaling pathways underlying this regulation. Our results demonstrate a novel role for BMPs as inhibitors of glial differentiation in the peripheral nervous system and suggest that BMPs may regulate the developmental timing of glial maturation.
This study assessed the effects of streptozotocin diabetes in swine on the heart rate response to beta-adrenergic stimulation the adenylyl cyclase signal transduction pathway. Diabetic animals (n = 9) were hyperglycemic compared to the control group (n = 10) (12.6 +/- 1.0 vs. 3.53 +/- 0.29 mM). There were no significant differences between the diabetic and nondiabetic groups in the heart rate response to isoproterenol, however, there was a significant reduction (14%) in beta-adrenergic receptor density in the right atrium in the diabetic (61 +/- 3 fmol/mg protein) versus the nondiabetic group (71 +/- 3) (P < 0.05). The content of guanosine triphosphate binding regulatory proteins (Gs and Gi) in the right atrium was not affected by diabetes, nor was adenylyl cyclase activity under unstimulated conditions or with receptor-dependent stimulation with isoproterenol. On the other hand, adenylyl cyclase activity was 34% lower when directly stimulated with forskolin, and it was reduced by 23% when stimulated through Gs with Gpp(NH)p. In conclusion, beta-adrenergic stimulation of heart rate with isoproteronol and the receptor-dependent signal transduction pathway remained intact in the right atrium of diabetic swine despite reduced beta-adrenergic receptor density, G-protein content, and direct stimulation of adenylyl cyclase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.