Fourteen genetically modified lines of alfalfa (Medicago sativa) containing the gene Ov from Japanese quail, coding for a methionine-rich protein ovalbumin, were evaluated for nodulation ability and concentration of aerobic bacteria in the rhizosphere. The transgenic lines were derived from a highly regenerable genotype Rg9/I-14-22, selected from cv. Lucia. On selective media, a higher concentration of ammonifying bacteria, bacterial spores, denitrifying and nitrifying bacteria were observed in the rhizosphere of transgenic clonesand, on the other hand, lower concentration of cellulolytic bacteria and Azotobacter spp. compared with the rhizosphere of non-transgenic clone SE/22-GT2. A statistically significant difference in the concentration of all the bacterial types was found between samples taken from two types of substrates (i.e. sterile vs. nonsterile). Higher bacterial concentration (measured as colony forming units per g soil dry mass) were observed for all tested groups of culturable bacteria in the non-sterile substrate. The presence of Azotobacter spp. was found only in the rhizosphere of plants grown in non-sterile soil in which the highest number of fertile soil particles (97 %) was observed in transgenic clones SE/22-9-1-12 and SE/22-11-1-1S.1. Concentration of bacteria involved in the N cycle in the soil was increased in the rhizosphere of transgenic clones and decreased in the rhizosphere of non-transgenic plants compared with the average value. In spite of some differences in colony numbers in samples isolated from the root rhizosphere of transgenic and nontransgenic alfalfa plants, we could not detect any statistically significant difference between individual lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.