We present a sequential Bayesian learning method for tracking non-stationary signal-to-noise ratios in LDPC codes using probabilistic graphical models. We represent the LDPC code as a cluster graph using a general purpose cluster graph construction algorithm called the layered trees running intersection property (LTRIP) algorithm. The channel noise estimator is a global Gamma cluster, which we extend to allow for Bayesian tracking of non-stationary noise variation. We evaluate our proposed model on real-world 5G drive test data. Our results show that our model is capable of tracking non-stationary channel noise, which outperforms an LDPC code with a fixed knowledge of the actual average channel noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.