We present some exact results for the effect of disorder on the critical properties of an anisotropic XY spin chain in a transverse field. The continuum limit of the corresponding fermion model is taken and in various cases results in a Dirac equation with a random mass. Exact analytic techniques can then be used to evaluate the density of states and the localization length. In the presence of disorder the ferromagnetic-paramagnetic or Ising transition of the model is in the same universality class as the random transverse field Ising model solved by Fisher using a real-space renormalization-group decimation technique ͑RSRGDT͒. If there is only randomness in the anisotropy of the magnetic exchange then the anisotropy transition ͑from a ferromagnet in the x direction to a ferromagnet in the y direction͒ is also in this universality class. However, if there is randomness in the isotropic part of the exchange or in the transverse field then in a nonzero transverse field the anisotropy transition is destroyed by the disorder. We show that in the Griffiths' phase near the Ising transition that the ground-state energy has an essential singularity. The results obtained for the dynamical critical exponent, typical correlation length, and for the temperature dependence of the specific heat near the Ising transition agree with the results of the RSRGDT and numerical work. ͓S0163-1829͑99͒07125-8͔
Starting from Gaussian random matrix models we derive a new supermatrix field theory model. In contrast to the conventional non-linear sigma models, the new model is applicable for any range of correlations of the elements of the random matrices. We clarify the domain of integration for the supermatrices, and give a demonstration of how the model works by calculating the density of states for an ensemble of almost diagonal matrices. It is also shown how one can reduce the supermatrix model to the conventional sigma model.
Carrier-mediated exchange coupling, known as Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, plays a fundamental role in itinerant ferromagnetism and has great application potentials in spintronics. A recent theorem based on the imaginary-time method shows that the oscillatory RKKY interaction becomes commensurate on bipartite lattice and predicts that the effective exchange coupling is always ferromagnetic for the same sublattice but antiferromagnetic for opposite sublattices. We revisit this important problem by real- and imaginary-time methods and find the theorem misses important contributions from zero modes. To illustrate the importance of zero modes, we study the spin susceptibility in graphene nanoribbons numerically. The effective exchange coupling is largest on the edges but does not follow the predictions from the theorem
Many physical systems are well described on domains which are relatively large in some directions but relatively thin in other directions. In this scenario we typically expect the system to have emergent structures that vary slowly over the large dimensions. For practical mathematical modelling of such systems we require efficient and accurate methodologies for reducing the dimension of the original system and extracting the emergent dynamics. Common mathematical approximations for determining the emergent dynamics often rely on self-consistency arguments or limits as the aspect ratio of the 'large' and 'thin' dimensions becomes unphysically infinite. Here we build on a new approach, previously establish for systems which are large in only one dimension, which analyses the dynamics at each cross-section of the domain with a rigorous multivariate Taylor series. Then centre manifold theory supports the local modelling of the system's emergent dynamics with coupling to neighbouring cross-sections treated as a non-autonomous forcing. The union over all cross-sections then provides powerful support for the existence and emergence of a centre manifold model global in the large finite domain. Quantitative error estimates are determined from the interactions between the cross-section coupling and both fast and slow dynamics. Two examples provide practical details of our methodology. The approach developed here may be used to quantify the accuracy of known approximations, to extend such approximations to mixed order modelling, and to open previously intractable modelling issues to new tools and insights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.