Research on chitin as a marine resource is pointing to novel applications for this cellulose-like biopolymer. Discovery of nondegrading solvent systems has permitted the spinning of filaments, for example, for use as surgical sutures. New methods for preparing the bioactive alkyl glycoside of N-acetyl-D-glucosamine (the monomer unit of chitin) and a microcrystalline chitin has encouraged their use as promoters for growth of bifidobacteria and as an aid in digestion of high-lactose cheese whey by domestic animals. Chitin-protein complexes of several crustacean species show great variability in ratios of chitin to covalently bound protein and in residual protein in the "purified" chitins.
In this paper, we report an AFM study on the supramolecular structures adopted by the synthetic polypentapeptide poly(ValGlyGlyValGly), whose monomeric sequence is an abundant, simple building block of elastin. The polypeptide was analyzed by deposition from both methanolic and aqueous suspensions, showing different behaviors. In methanol, the polypeptide is able to evolve, in a time-dependent way, from layers to ribbons to beaded filaments. When the equilibrium is reached, the formation of well-defined dendritic structures is also observed. This restructuring of the polypentapeptide seems to be reminiscent of a sort of Rayleigh instability. When deposited from aqueous suspensions, the polypeptide self-assembles either in fibrillar networks or in amyloid-like patterns, both of them being found in elastin or elastin-related polypeptides. As a general finding, poly(ValGlyGlyValGly) seems to constitute an excellent mimetic of the supramolecular properties of native elastin.
The chemical bonds of the pentapeptide sequence of elastin ValGlyGlyValGly (VGGVG), both in its monomer and polymer forms, were correlated with their XPS spectra through a well-established curve-fitting procedure. To aid in this correlation, the C1s, O1s, and N1s chemical shifts of the Boc-VGGVG-OEt, were validated by theoretical calculations, performed in the framework of the Koopman approximation of HF/6-31G molecular orbitals, leading to the "preferred" conformation of the protected monomer. Then the same curve-fitting procedure was adopted for interpreting the XPS spectra of the polypentapeptide as a powder, and the XPS results obtained both for monomer and polymer compounds were compared with those obtained by FT-IR. The polymer was then analyzed after deposition onto a silicon substrate, Si(100), either from methanol or water suspensions and the presence of hydrogen bonds was detected at the polymer/substrate interface and between the polymer chains. The "surface rearrangement" that could be inferred from XPS results strongly confirms that derived from AFM images previously obtained under the same experimental conditions. In particular, the observed amyloid conformation is stabilized by hydrogen bonds to water molecules included in the structure while the formation of the beaded string structure observed in deposits from methanolic suspension is probably mediated by hydrogen bonds to the hydrated silicon surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.