Collagen-induced arthritis (CIA) generated in rats or mice has long been a model system for the study of rheumatoid arthritis in humans. In particular, this system has been used to study the mechanisms and effects of anti-arthritic drugs in the treatment of the disease. Sodium aurothiomalate (ATM) is an agent often used to treat rheumatoid arthritis in humans; however, it possesses inherent toxicities which limits its usefulness. Liposome-encapsulated drugs are currently being developed to minimize the toxicities associated with a variety of potentially beneficial drugs. We have chosen to encapsulate ATM into small unilamellar vesicles (SUVs) to determine whether greater efficacy would be achieved in treating CIA with SUV ATM as compared to using the free drug. SUVs were prepared from hydrogenated egg phosphatidylcholine and cholesterol. These SUVs were very stable. Vesicles stored at 4 degrees C lost only 0.09% of encapsulated ATM (SUV ATM) after 14 days and were able to reduce collagen-induced arthritis in these mice. Animals treated by i.m. injections of SUV ATM exhibited a 50% reduction in symptoms. More importantly, histological examination of knee joints of the affected animals verified that SUV ATM treatment prevented cellular infiltration of lymphocytes into the synovia of the collagen-sensitized mice. Conditioned media from spleen cell cultures was assayed for the presence of inflammatory lymphokines that might be affected by SUV ATM to account for the success in suppressing collagen-induced arthritis.
SummaryStrategies are being sought that allow the induction of specific tolerance to allogeneic transplants without affecting other immune functions. The so-called veto effect has been described as one such technology where CD8 + cells suppress responses of class I MHC-restricted T-lymphocyte precursors to antigens expressed by those CD8 + veto cells. Yet, veto inhibition will not be able to provide complete tolerance to allogeneic grafts since it only operates on cell populations that express CD8. Other types of cells prevalent in most organs express different tissue-specific antigens that are recognized by alloreactive T-cells. Therefore, complete tolerance to an allogeneic transplant can only be achieved if all cellular components within the graft acquire the immune-inhibitory function. Here, we studied whether the veto effect could be exploited for this purpose nevertheless. We produced a hybrid antibody (HAb) combining a mAb specific for a class I MHC molecule with a soluble CD8 molecule. We found that this HAb specifically and effectively transferred veto inhibition to different stimulator cell populations. Thus, we have developed a strategy that promises to selectively and completely tolerize graft-specific CTLs without affecting normal immune responses.
Ag do not elicit T lymphocyte responses unless they are presented in conjunction with MHC molecules on the surface of an appropriate APC. In the case of CD4+ T lymphocytes dendritic cells can deliver all signals required for complete induction as can macrophages and (activated) B cells. The function of CTL also depends on the presence of specialized accessory cells. Here we show that these accessory cells can behave like scavenger cells. They use foreign Ag in the form of cellular debris as immunogen. They are also crucial for CTL induction because in vivo depletion of phagocytotic cells completely inhibits CTL responses. In these animals CTL activity could be restored by transfer of macrophages. All of the reappearing CTL used MHC restriction elements expressed by the infused macrophages. These experiments suggest that a cognate interaction between macrophages and CTL precursors initiates class I MHC-restricted immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.