Given the importance of soil as a supplier of nutrients and water for different ecosystems, understanding soil health and quality is necessary for its preservation. Microorganisms, due to their high abundance and their relationship with the degradation of organic matter and biogeochemical cycles, have a rapid response to environmental changes and thus are a discriminating factor that can be used as bioindicators of soil health. However, 97% of microorganisms are unculturable, leaving a gap in their taxonomic and functional knowledge. The development of metagenomics has reduced this problem through the direct extraction of DNA from soil, allowing the characterization of such non-culturable microorganisms, this technique can be considered one of the most impactful in soil health, given that it allows for an exploration of the biodiversity, the community structure, and the potential functions of the microbial communities from distinct environments. In addition to this, metagenomics have had an impact in different areas such as "OneHealth" or EcoGenomics allowing the formation of international projects. The aim of this paper is to show how metagenomics can be used as a technique to assess soil quality and health through the taxonomic and functional identifi cation of the microorganisms present in the soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.