Bovine lactic acidosis syndrome is associated with large increases of lactic acid in the rumen, which result from diets that are high in ruminally available carbohydrates, or forage that is low in effective fiber, or both. The syndrome involves two separate anatomical areas, the gastrointestinal tract and body fluids, and is related to the rate and extent of lactic acid production, utilization, and absorption. Clinical manifestations range from loss of appetite to death. Lactic acid accumulates in the rumen when the bacteria that synthesize lactic acid outnumber those that utilize lactic acid. The systemic impact of acidosis may have several physiological implications, including laminitis, a diffuse aseptic inflammation of the laminae (corium). Although a nutritional basis for the disease exists, etiology includes a multitude of interactive factors, such as metabolic and digestive disorders, postpartum stress, and localized trauma, which lead to the release of vasoactive substances that trigger mechanisms that cause degenerative changes in the foot. The severity of laminitis is related to the frequency, intensity, and duration of systemic acidotic insults on the mechanisms responsible for the release of vasoactive substance. The critical link between acidosis and laminitis appears to be associated with a persistent hypoperfusion, which results in ischemia in the digit. Management of acidosis is critical in preventing laminitis. High producing dairy herds attempting to maximize energy intake are continually confronted with subclinical acidosis and laminitis. Management of feeding and husbandry practices can be implemented to reduce incidence of disease.
Physical and chemical processing of feed ingredients and feeding management strategies are major instruments of manipulating amount and site of starch digestion in the gastrointestinal tract. Generally, as rumen escape of starch increases, postruminal starch digestion increases, and there does not appear to be a limitation to intestinal starch digestion. However, the efficiency with which postruminal starch is digested decreases, which represents a limitation that warrants investigation. Even though digestible dietary starch is presented to the intestine, there is no net glucose absorption at the portal vein, and plasma glucose levels remain relatively unaffected. This result may be associated with the large metabolic requirement for postruminally absorbed glucose, which is preferentially used for oxidative metabolism at the visceral tissue level. In addition, peripheral glucose concentration is highly regulated. A possible implication is that the exogenous glucose supply may spare endogenously synthesized glucose for gut metabolism, allowing more to be directed to the mammary gland. Amino acids also may be spared (less metabolism of dietary and tissue amino acids in the gut). Current production studies yield no clear evidence as to the benefits of postruminal digestion of starch to enhance milk yield or to change its composition. However, studies suggest that starch digested postruminally is used more efficiently for milk synthesis than that digested in the rumen.
Five hundred seventy-three cows, balanced by parity and 305-d mature equivalent at dry off, were assigned to 1 of 4 treatments: 1) 75% complexed trace minerals (CTM; 75C): Zn, Mn, Cu, and Co supplied at 75% of NRC (2001) guidelines by Zn-, Mn-, and Cu-specific AA complexes, and cobalt glucoheptonate; 2) 100% inorganic (100I): Zn, Mn, Cu, and Co supplied at 100% of NRC (2001) requirements by sulfate sources; 3) 100% complexed (100C): Zn, Mn, Cu, and Co supplied at 100% of NRC (2001) requirements by CTM; and 4) complexed/ inorganic (C/I): Zn and Cu supplied at 100% of NRC (2001) requirements using a combination of CTM and sulfates and Co and Mn supplied with sources at 9.1 and 3.3 times NRC (2001) requirements using a combination of CTM and sulfates. All percentages of Zn, Cu, Mn, and Co relative to NRC (2001) reflect supplemental contributions and do not include basal diet contributions. Experimental periods were dry period 1, full lactation 1, dry period 2, and 200 d into the subsequent lactation. Reproductive, health, and production information was collected during both lactations. Claw evaluations were conducted at trial start, 150 d into lactation 1, at the end of lactation 1, and 150 d into lactation 2. During lactation 1, C/I cows produced more milk, fat-corrected milk, energy-corrected milk, and fat than 100I cows. During lactation 2, yields of milk, fat-corrected milk, energy-corrected milk, fat, and protein were higher for 100C and C/I cows than for 75C or 100I cows. Fat percentage was highest for 100C cows with no treatment effect on protein content. During lactations 1 and 2, C/I cows had fewer days to first estrus than cows receiving the other treatments. During lactation 2, C/ I cows had fewer services per conception and days open. There were no significant effects of treatment on health. White line separation incidence was lower for 100I cows than 75C cows, whereas heel erosion was higher for the 100I cows than for the C/I cows. Fortification of trace elements with inorganic and complexed sources at or above NRC requirements improved reproductive and productive performance. In addition, cows can be supplemented with CTM at 75% of NRC requirements with no reduction in performance compared with supplementing at 100% of NRC requirements using only sulfate sources of Zn, Mn, Cu, and Co.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.