Determining the optimum temperature and pressure for the dehydration of natural gas in a glycol absorption unit and the recovery of the glycol from the glycol water mixture in a desorption unit is of great importance. Although, the equilibrium base model for the absorption column design had been in use, the rate based model for the absorption unit offers a promising technique and had been proven to be more accurate in determining the parameters for the design. In this study, dehydration of a natural gas plant was modelled with optimization of its parameters. The effects on cost were adequately studied. Sensitivity analysis resulting from the simulation showed that a lower temperature for effective absorption of the water from the gas stream by triethylene glycol (TEGlycol) solvent is expected, while a higher temperature and higher reboiler duty is required for the regeneration of the solvent from the Rich TEGlycol stream in a distillation column. The sequential quadratic programming (SQP) direct optimization method was employed to optimize the major parameters of the natural gas dehydration plant. The optimum temperature of 267 °F and Reboiler duty of 169,789 Btu/h gave a 0.99 TEGlycol recovery purity. A minimized capital cost of 3.73 million US Dollars and operating cost of approximately 1 million US dollars was also observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.