Heat production and isovolumetric pressure development (P) were measured simultaneously in the arterially perfused rat ventricle. The time course of the calorimetric signal that follows a contraction could be decomposed into four components of energy released. Three of these components (H1, H2, and H4) were pressure independent, only H3 correlated with either P or the pressure-time integral (PtI) (r > 0.78, n = 36, P < 0.01). The dimensionless slope of the regression of H3 on P was 0.24 (an index of muscle economy) and the absence of O2 (N2 replacement) decreased it to 0.178 suggesting that 26% of H3 is related to oxidative metabolism. H4 was the most affected by the lack of O2 in the perfusate. It decreased to 16% in the first beat under N2 without change in P or in H1, H2 or H3, and disappeared (1.6 +/- 1.0 mJ.g-1) in the fourth contraction under N2 (while P, H1, H2 and H3 remained over 64% of their control values). H4 was activated during the first 1-3 beats after a quiescent period and remained active for several seconds (even in the absence of subsequent stimulation) as if the basal metabolism had been increased to a new steady level. H1 and H2 were dependent on the extracellular Ca. The magnitudes of both H1 (1.8 +/- 0.2 mJ.g-1) and H2 (2.7 +/- 0.2 mJ.g-1) were similar to those reported for the fast and slow components of activation heat in skeletal muscle. If twin stimuli are applied (200 ms apart), additional energy is released (+3.0 +/- 0.3 mJ.g-1) that can be decomposed in two components similar to those identified as H2 and H3. The magnitude of H1, its absence in the twin contraction and its Ca dependency suggest an association with Ca-binding processes (mainly Troponin C). The presence of an H2 component during the twin contraction, its magnitude and Ca dependence gives support to a relationship between H2 and Ca removal processes.
A method has been developed to measure myocardial heat production simultaneously with mechanical (developed tension, rate of contraction and relaxation) and metabolic parameters in the arterially perfused interventricular septum of the rabbit. The system allows control of rest tension, frequency of contraction, temperature, and composition of the perfusate. The technique is based on the differential measurement of the heat flux from the muscle to the calorimetric bath. This technique is able to resolve changes in heat production as small as 0.06 mW. The resting heat production measured with the present calorimeter (1.62 +/- 0.1 mW/g wet tissue) agrees with that obtained with thermopiles and with that calculated from measurements of oxygen consumption. The heat per contraction (6.5 +/- 1.4 mJ/g wet tissue) also agreed with that measured with thermopiles in rabbit papillary muscles. The heat production measured at 22 degrees C under severe hypoxia can be fully explained by the addition of the expected change of enthalpy due to the reaction 0.5 glucose-lactate, calculated on the basis of the lactate measured in the perfusate, and the expected change of enthalpy of oxygen consumption [assuming that all remaining O2 in perfusate (0.09 vol%) is used for combustion of glucose]. These results clearly demonstrated the feasibility of this method for the correlation of changes in energy turnover, through the measurement of the heat production, with mechanical and metabolic processes on-line in arterially perfused septum.
The consequences of an extrasystole (ES) on cardiac muscle’s energetics and Ca2+ homeostasis were investigated in the beating heart. The fraction of heat release related to pressure development (pressure dependent) and pressure-independent heat release were measured during isovolumic contractions in arterially perfused rat ventricle. The heat release by a contraction showed two pressure-independent components (H1 and H2) of short evolution and a pressure-dependent component (H3). The additional heat released by ES was decomposed into one pressure-independent ([Formula: see text]) and one pressure-dependent ([Formula: see text]) component with time courses similar to those of control components H2 and H3. ES also induced the potentiation of pressure development (P) and heat release during the postextrasystolic (PES) beat. The slope of the linear relationship between pressure-dependent heat and pressure maintenance was similar in control, ES, and PES contractions (0.08 ± 0.01, 0.10 ± 0.02, and 0.08 ± 0.01 mJ ⋅ g−1 ⋅ mmHg−1 ⋅ s−1, respectively). The potentiation of H2 (heat component related with Ca2+ removal processes) in PES was equal to [Formula: see text] at 0.3, 0.5, 1, and 2 mM Ca2+, suggesting that the extra amount of Ca2+ mobilized during ES was recycled in PES. Pretreatment with 1 mM caffeine to deplete sarcoplasmic reticulum Ca2+ content inhibited both the mechanical and energetic potentiation of PES. However, the heat released and the pressure developed during ES were not changed by sarcoplasmic reticulum depletion. The results suggest that 1) the source of Ca2+ for ES would be entirely extracellular, 2) the Ca2+ entered during ES is accumulated in the sarcoplasmic reticulum, and 3) the Ca2+ stored by the sarcoplasmic reticulum during ES induces an increased contribution of this organelle during PES compared with the normal contraction.
Heart basal metabolism has been classically studied as the energy expenditure of those processes unrelated to mechanical activity and often measured by rendering the heart inactive using cardioplegic solutions (usually by increasing extracellular K concentration ([Kle]). In arterially perfused rat heart (at 25 degrees C), raising [K]e from 7 to 25 mM at a constant extracellular Ca concentration ([Ca]e) (0.5 mM), induced an increase in resting heat production (Hr) from 4.1 +/- 0.3 to 5.1 +/- 0.3 mol. wt g-1. Under 25 mM K additional increase in [Ca]e further increased Hr to 6.0 +/- 0.4, 7.0 +/- 0.4 and 8.3 +/- 0.9 mol. wt g-1 for 1, 2 and 4 mM Ca, respectively. While under 7 mM K perfusion Hr was not affected by 4 microM verapamil, under 25 mM K and 2 mM Ca 0.4 microM verapamil induced a decrease in Hr (-1.6 +/- 0.2 mol. wt g-1, n = 5, P < 0.001). Caffeine increased Hr under 0.5 mM Ca and 7 mM K perfusion (+0.32 +/- 0.06 and +1.19 +/- 0.25 mol. wt g-1 for 1 and 5 mM caffeine respectively), but under 25 mM K conditions Hr was not affected by caffeine 2 mM. Severe hypoxia decreased Hr under both 7 and 25 mM K (3.7 +/- 0.5 to 2.7 +/- 0.4 mol. wt g-1 and 7.0 +/- 0.4 to 2.2 +/- 0.5 mol. wt g-1, respectively) suggesting that the increased Hr associated with the verapamil sensitive fraction of heat released is associated to a mitochondrial mechanism. Therefore, the use of high [K]e overestimates basal values by increasing a verapamil sensitive fraction of the energy released. In addition, high [K]e modifies a caffeine sensitive energy component probably due to a depletion of caffeine-dependent Ca stores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.