The frequent monitoring of a horse’s body temperature post strenuous exercise is critical to prevent or alleviate exertional heat illness (EHI) from occurring. Percutaneous thermal sensing microchip (PTSM) technology has the potential to be used as a means of monitoring a horse’s body temperature during and post-exercise. However, the accuracy of the temperature readings obtained, and their relationship to core body temperature are dependent on where they are implanted. This study aimed to document the relationship between core body temperature, and temperature readings obtained using PTSM implanted in different muscles, during exercise and post application of different cool-down methods. PTSMs were implanted into the right pectoral, right gluteal, right splenius muscles, and nuchal ligament. The temperatures were monitored during treadmill exercise, and post application of three different cool-down methods: no water application (Wno), water application only (Wonly), and water application following scraping (Wscraping). Central venous temperature (TCV) and PTSM temperatures from each region were obtained to investigate the optimal body site for microchip implantation. In this study, PTSM technology provided a practical, safe, and quick means of measuring body temperature in horses. However, its temperature readings varied depending on the implantation site. All muscle temperature readings exhibited strong relationships with TCV (r = 0.85~0.92, p < 0.05) after treadmill exercise without human intervention (water application), while the nuchal ligament temperature showed poor relationship with TCV. The relationships between TCV and PTSM temperatures became weaker with water application. Overall, however the pectoral muscle temperature measured by PTSM technology had the most constant relationships with TCV and showed the best potential to act as an alternate means of monitoring body temperature in horses for 50 min post-exercise, when there was no human intervention with cold water application.
Dogs undergo various surgical procedures such as castration, ovariohysterectomy, and other orthopedic procedures, which are known to cause inflammation and pain. Non-steroidal anti-inflammatory drugs (NSAIDs) are very effective analgesics for alleviating postoperative pain in veterinary medicine. Ketoprofen is currently approved in Australia and the United States for treating different painful conditions in dogs. This study evaluated the pharmacokinetic parameters of ketoprofen after intravenous (IV) and transdermal (TD) administration in healthy dogs. A novel transdermal ketoprofen (TDK) formulation containing 20% ketoprofen, dissolved in a combination of 45:45% isopropanol and Transcutol, along with 10% eucalyptus oil, was developed and evaluated for in vitro dermal permeation using Franz diffusion cells. A crossover study was then conducted to determine the pharmacokinetic parameters of the formulation in six dogs following IV ketoprofen (1 mg/kg) and TDK (10 mg/kg) administration. A liquid chromatography–mass spectrometry (LC-M/MS) method was used to measure plasma concentrations of ketoprofen over time, and a non-compartmental analysis determined the pharmacokinetic parameters. The mean terminal elimination half-life (T½ h), AUC0-t (µg·h/mL), and mean residence time (MRT, h) between IV and TDK groups were 4.69 ± 1.33 and 25.77 ± 22.15 h, 15.75 ± 7.72 and 8.13 ± 4.28 µg·h/mL, and 4.86 ± 1.81 and 41.63 ± 32.33 h, respectively. The calculated bioavailability (F%) was ~7%, with a lag time of 30 min to achieve effective plasma concentrations after the application of TDK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.