In recent codes of practice for reference dosimetry in clinical proton beams using ionization chambers, it is recommended to perform the measurement in a water phantom. However, in situations where the positioning accuracy is very critical, it could be more convenient to perform the measurement in a plastic phantom. In proton beams, a similar approach as in electron beams could be applied by introducing fluence correction factors in order to account for the differences in particle fluence distributions at equivalent depths in plastic and water. In this work, fluence correction factors as a function of depth were determined for proton beams with different energies using the Monte Carlo code PTRAN for PMMA and polystyrene with reference to water. The influence of non-elastic nuclear interaction cross sections was investigated. It was found that differences in proton fluence distributions are almost entirely due to differences in non-elastic nuclear interaction cross sections between the plastic materials and water. For proton beams with energies lower than 100 MeV, for which the contributions from non-elastic interactions become small compared to the total dose, the fluence corrections are smaller than 1%. For beams with energies above 200 MeV, depending on the cross sections dataset for non-elastic nuclear interactions, fluence corrections of 2-5% were found at the largest depths. The results could, with an acceptable accuracy, be represented as a correction per cm penetration of the beam, yielding values between 0.06% and 0.15% per cm for PMMA and 0.06% to 0.20% per cm for polystyrene. Experimental information on these correction factors was obtained from depth dose measurements in PMMA and water. The experiments were performed in 75 MeV and 191 MeV non-modulated and range-modulated proton beams. From the experiments, values ranging from 0.03% to 0.15% per cm were obtained. A decisive answer about which dataset for non-elastic nuclear interactions would result in a better representation of the measurements could not be given. We conclude that below 100 MeV, dosimetry could be performed in plastic phantoms without a dramatic loss of accuracy. On the other hand, in clinical high-energy proton beams, where accurate positioning in water is in general not an issue, substantial correction factors would be required for converting dose measurements in a plastic phantom to absorbed dose to water. It is therefore not advisable to perform absorbed dose measurements nor to measure depth dose distributions in a plastic phantom in high-energy proton beams.
HighlightsA novel proton CT imaging system, based entirely on solid-state detector technology.First proton CT scan with solid-state detectors.Potential for short scan times as well as improvement in RSP accuracy.
With more patients receiving external beam radiation therapy with protons, it becomes increasingly important to refine the clinical understanding of the relative biological effectiveness (RBE) for dose delivered during treatment. Treatment planning systems used in clinics typically implement a constant RBE of 1.1 for proton fields irrespective of their highly heterogeneous linear energy transfer (LET). Quality assurance tools that can measure beam characteristics and quantify or be indicative of biological outcomes become necessary in the transition towards more sophisticated RBE weighted treatment planning and for verification of the Monte Carlo and analytical based models they use. In this study the RBE for the CHO-K1 cell line in a passively delivered clinical proton spread out Bragg peak (SOBP) is determined both in vitro and using a silicon-on-insulator (SOI) microdosimetry method paired with the modified microdosimetric kinetic model. The RBE along the central axis of a SOBP with 2 Gy delivered at the middle of the treatment field was found to vary between 1.11–1.98 and the RBE for 10% cell survival between 1.07–1.58 with a 250 kVp x-ray reference radiation and between 1.19–2.34 and 0.95–1.41, respectively, for a Co60 reference. Good agreement was found between RBE values calculated from the SOI-microdosimetry-MKM approach and in vitro. A strong correlation between proton lineal energy and RBE was observed particularly in the distal end and falloff of the SOBP.
High-resolution neutron fluence spectra have been measured in the National Accelerator Centre's p(66)/Be(40) neutron therapy beam by the pulsed-beam time-of-flight method. ICRU muscle kerma spectra have been derived from the fluence spectra. Spectral changes resulting from different irradiation conditions have been quantified in terms of the average neutron energy and the fractional low-energy (< 16 MeV) contribution. The changes observed with different thicknesses of polyethylene filtration are consistent with changes in quality parameters determined in biological and microdosimetric experiments. The dosimetry parameters (KtissueA150) N and (Wgas) N calculated for the measured spectra agree with the values recommended in the neutron dosimetry protocol. The shapes of the present fluence spectra differ from previous measurements of p(> 40)/Be spectra. In particular, they differ significantly from the spectrum measured by recoil techniques in an identical neutron therapy unit at the Clatterbridge Hospital, UK. The reasons for the difference are not known.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.