Supermassive black holes in the nuclei of active galaxies expel large amounts of matter through powerful winds of ionized gas. The archetypal active galaxy NGC 5548 has been studied for decades, and high-resolution x-ray and ultraviolet (UV) observations have previously shown a persistent ionized outflow. An observing campaign in 2013 with six space observatories shows the nucleus to be obscured by a long-lasting, clumpy stream of ionized gas not seen before. It blocks 90% of the soft x-ray emission and causes simultaneous deep, broad UV absorption troughs. The outflow velocities of this gas are up to five times faster than those in the persistent outflow, and, at a distance of only a few light days from the nucleus, it may likely originate from the accretion disk.
An extensive multi-satellite campaign on NGC 5548 has revealed this archetypal Seyfert-1 galaxy to be in an exceptional state of persistent heavy absorption. Our observations taken in 2013-2014 with XMM-Newton, Swift, NuSTAR, INTEGRAL, Chandra, HST and two ground-based observatories have together enabled us to establish that this unexpected phenomenon is caused by an outflowing stream of weakly ionised gas (called the obscurer), extending from the vicinity of the accretion disk to the broad-line region. In this work we present the details of our campaign and the data obtained by all the observatories. We determine the spectral energy distribution of NGC 5548 from near-infrared to hard X-rays by establishing the contribution of various emission and absorption processes taking place along our line of sight towards the central engine. We thus uncover the intrinsic emission and produce a broadband continuum model for both obscured (average summer 2013 data) and unobscured (<2011) epochs of NGC 5548. Our results suggest that the intrinsic NIR/optical/UV continuum is a single Comptonised component with its higher energy tail creating the "soft X-ray excess". This component is compatible with emission from a warm, optically-thick corona as part of the inner accretion disk. We then investigate the effects of the continuum on the ionisation balance and thermal stability of photoionised gas for unobscured and obscured epochs.
Aims. To study the cosmological evolution of active galactic nuclei (AGN) is one of the main goals of X-ray surveys. To accurately determine the intrinsic (before absorption) X-ray luminosity function, it is essential to constrain the evolutionary properties of AGN and therefore the history of the formation of supermassive black holes with cosmic time. Methods. In this paper we investigate the X-ray luminosity function of absorbed (log N H > 22) and unabsorbed AGN in three energy bands (soft: 0.5−2 keV, hard: 2−10 keV and ultrahard: 4.5−7.5 keV). For the hard and ultrahard sources we have also studied the N H function and the dependence of the fraction of absorbed AGN on luminosity and redshift. This investigation is carried out using the XMS survey along with other highly complete flux-limited deeper and shallower surveys in all three bands for a total of 1009, 435, and 119 sources in the soft, hard and ultrahard bands, respectively. We modelled the instrinsic absorption of the hard and ultrahard sources (N H function) and computed the X-ray luminosity function in all bands using two methods. The first makes use of a modified version of the classic 1/V a technique, while the second performs a maximum likelihood (ML) fit using an analytic model and all available sources without binning. Results. We find that the X-ray luminosity function (XLF) is best described by a luminosity-dependent density evolution (LDDE) model. Our results show good overall agreement with previous results in the hard band, although with slightly weaker evolution. Our model in the soft band present slight discrepancies with other works in this band, the shape of our present day XLF being significantly flatter. We find faster evolution in the AGN detected in the ultrahard band than those in the hard band. Conclusions. The results reported here show that the fraction of absorbed AGN in the hard and ultrahard bands is dependent on the X-ray luminosity. We find evidence that this fraction evolves with redshift in the hard band, whereas there is none in the ultrahard band, possibly due to the low statistics. Our best-fit XLF shows that the high-luminosity AGN, detected in all bands, exhibit a similar behaviours and are fully formed earlier than the less luminous AGN. The latter sources account for the vast majority of the accretion rate and mass density of the Universe, according to an anti-hierarchical black hole growth scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.