Cylindric titanium rods with different surfaces were axially implanted into the femora of sheep. The three surfaces were grit-blasted titanium, plasma-sprayed titanium and plasma-sprayed hydroxyapatite (HA). After 2 months, a 2-cm segment of the femoral shaft was completely resected to load the implant, and the animals were allowed full weight-bearing for 9 months. Biomechanical and histological evaluation of the implants was undertaken 2 months after implantation and 9 months after the segmental resection. The mechanical testings of well-fixed implants were performed 9 months after segmental resection. Loosening of 45% of the titanium-coated implants was observed in the first 3 weeks, but thereafter, no further loosening occurred. The HA-coated implants remained entirely fixed for 3 weeks, but thereafter, a progressively increasing incidence of loosening up to 55% after 9 months of loading was detected as subsidence on X-radiographs. The maximum push-out strength of the titanium-coated implants was 4.9 MPa compared with 2.3 MPa for HA-coated ones. No significant mechanical interlock between the grit-blasted surface and bone was observed. The HA coating was found to be delaminated in all unstable implants, whereas the titanium coating remained completely intact. Morphometric analyses of well-fixed rods showed complete bony ingrowth onto the HA surface, whereas the contact area between the bone and the two titanium surfaces was less than 40%. Concerning clinical significance bony ingrowth with long-term mechanical interlock between the implant surface and the bone cannot be achieved by grit-blasting or HA-coating.(ABSTRACT TRUNCATED AT 250 WORDS)
258 fresh and old navicular fractures and pseudarthroses are analysed with regard to conservative and operative treatment. Fracture healing occurred in 97.2% of conservatively treated cases. The method described by Matti-Russe using an iliac graft has given good results in old fractures and pseudarthroses, causing 95% fracture healing in old fractures and 76% in pseudarthroses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.