Lymph-borne, soluble factors (e.g., chemokines and others) influence lymphocyte recirculation and endothelial phenotype at high endothelial venules (HEVs) in lymph node cortex. Yet the route lymph-borne soluble molecules travel from the subcapsular sinus to the HEVs is unclear. Therefore, we injected subcutaneously into mice and rats a wide variety of fluorophore-labeled, soluble molecules and examined their distribution in the draining lymph nodes. Rather than percolating throughout the draining lymph node, all molecules, including microbial lipopolysaccharide, were very visible in the subcapsular and medullary sinuses but were largely excluded from the cortical lymphocyte microenvironments. Exclusion prevailed even during the acute lymph node enlargement accompanying viral infection. However, low molecular mass (MW) molecules, including chemokines, did gain entry into the cortex, but in a very defined manner. Low MW, fluorophore-labeled molecules highlighted the subcapsular sinus, the reticular fibers, and the abluminal and luminal surfaces of the associated HEVs. These low MW molecules were in the fibers of the reticular network, a meshwork of collagen fibers ensheathed by fibroblastic reticular cells that connects the subcapsular sinus floor and the HEVs by intertwining with their basement membranes. Thus, low MW, lymph-borne molecules, including chemokines, traveled rapidly from the subcapsular sinus to the HEVs using the reticular network as a conduit.
The lymph node cortex is a critical site for encounter between recirculating T cells and their specific antigens. Due to its extreme plasticity, little is understood of the underlying functional unit of the lymph node cortex, the paracortical cord. The idealized paracortical cord (approximately 100 microns by 1000 microns) stretches from a medullary cord to the base of a B-cell follicle. In cross-section, a cord can be visualized as a set of nested cylinders consisting of spaces bounded by cells. The spaces are: i) the lumen of the high endothelial venule (HEV), ii) perivenular channels-narrow potential spaces (0.1 micron) tightly encircling the HEV, iii) corridors-broad spaces (10-15 microns) constituting the majority of the parenchyma, and iv) the cortical sinus. In addition to these spaces for cell traffic, the conduit (fifth space) is a special delivery system for the transit of soluble factors to the HEV and emigrating lymphocytes. The cellular barriers between these spaces are high endothelium, fibroblastic reticular cells, or sinus-lining cells. This review describes the spaces of the paracortical cord and their cellular boundaries, outlines the movement of cells and fluids through these spaces, and discusses how this anatomy affects the efficiency of surveillance by T cells.
Naive T cells encounter antigen-presenting cells within the cortex of lymph nodes to initiate primary immune responses. Within this T cell cortex is the reticular network (RN)--a system of collagen fibers and extracellular matrix (ECM) wrapped by fibroblastic reticular cells (FRC). We have investigated the distribution of various molecules, including ECM proteins and proteoglycans, in the T cell cortex of both human and rodent lymph node. We confirm and extend reports of matrix elements in the RN. In addition, we find that staining for the laminin-alpha3 chain and for tenascin reveals a 'hollow' reticular pattern, consistent with localization to the basement membrane-like covering of reticular fibers. In contrast, keratan sulfate is observed in a fine linear pattern within the RN, suggesting it is localized to the core of the fibers. Staining with the marker ER-TR7 indicates that FRC cover all identifiable ECM surfaces of the T cell cortex. Based on these findings and previous reports, we conclude that cortical lymphocytes migrate within a 'labyrinthine cavity' free of fibrillar ECM, distinguishing the T cell cortex from other loose connective tissues, and that the FRC lining of the cavity constitutes an epithelium-like boundary. We propose that this spatial organization facilitates ameboid leukocyte crawling along preformed paths of least resistance and that the basement membrane-like ECM of the FRC may facilitate fluid transport within the RN by limiting leakage from the fiber.
The lymph node is the crossroad in which soluble signals and cells carried by lymph meet lymphocytes emigrating from blood. Efficient interactions among these elements depend on the reticular network, which comprises reticular fibers, related extracellular matrix components, and associated fibroblastic reticular cells. This network provides a three-dimensional scaffold for attachment of APCs and pathways for the migration of T cells to these APCs. In addition, the network constitutes a miniature conduit system for bulk flow delivery of soluble molecules to distinct sites in the paracortex, particularly the high endothelial venule. The delivered mediators, such as chemokines, regulate the phenotype of the high endothelial venule, the recruitment of lymphocytes, and the behavior of the recruited lymphocytes. Thus, the reticular network is a multifunctional infrastructure that facilitates encounters of cells with other cells and factors necessary for effective and efficient immune surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.