Four trials of identical experimental design were conducted to determine the effects of temperature, dietary Lys level, and dietary Arg:Lys ratios on performance and carcass yield of male broilers. Birds of a commercial strain were grown from 21 to 42 d of age in wire-floored finishing batteries placed in environmental chambers. The chambers were programmed to provide either a constant thermoneutral temperature (21.1 C), a constant cold temperature (15.5 C), or a cycling hot diurnal temperature (25.5 to 33.3 C). Within each environment there was a factorial arrangement of three Lys levels (1.0, 1.1, and 1.2%) with four Arg:Lys ratios (1.1:1, 1.2:1, 1.3:1, and 1.4:1). Environmental temperature significantly influenced virtually every characteristic examined. Hot cyclic temperatures reduced weight gain, feed intake, and breast meat yield, and increased feed conversion, dressing percentage, leg quarter yield, and abdominal fat content. The cold environment promoted increased feed intake and mortality. Ascites and cardiomyopathy were the leading causes of death under cold exposure and thermoneutral conditions, whereas complications arising from heat exposure were the main cause of death under hot cyclic conditions. Levels of Lys affected leg quarter yield and abdominal fat content over all environments but increased breast meat yield only under cold conditions. Increasing Arg:Lys ratios improved feed conversion and dressing percentage and reduced abdominal fat content; it could not be determined whether these responses were consistent with Arg per se or were due to a nonspecific N response. As increasing Lys levels or Arg:Lys ratios did not improve weight gain, increase breast meat yield, or attenuate adverse effects due to heat or cold exposure, it is concluded that the levels of Lys and Arg suggested for 21 to 42 d by the NRC are adequate for birds of this age under the environmental conditions encountered.
Taken together, our findings provide evidence that the effects of 25(OH)D₃ on male broiler breast muscle are likely mediated through the mTOR-S6K pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.