We present the ROSAT All-Sky Survey Bright Source Catalogue (RASS-BSC, revision 1RXS) derived from the all-sky survey performed during the first half year (1990/91) of the ROSAT mission. 18,811 sources are catalogued (i) down to a limiting ROSAT PSPC countrate of 0.05 cts/s in the 0.1−2.4 keV energy band, (ii) with a detection likelihood of at least 15 and (iii) at least 15 source counts. The 18,811 sources underwent both an automatic validation and an interactive visual verification process in which for 94% of the sources the results of the standard processing were confirmed. The remaining 6% have been analyzed using interactive methods and these sources have been flagged. Flags are given for (i) nearby sources; (ii) sources with positional errors; (iii) extended sources; (iv) sources showing complex emission structures; and (v) sources which are missed by the standard analysis software. Broad band (0.1−2.4 keV) images are available for sources flagged by (ii), (iii) and (iv). For each source the ROSAT name, position in equatorial coordinates, positional error, source count-rate and error, background count-rate, exposure time, two hardness-ratios and errors, extent and likelihood of extent, likelihood of detection, and the source extraction radius are provided. At a brightness limit of 0.1 cts/s (8,547 sources) the catalogue represents a sky coverage of 92%. The RASS-BSC, the table of possible identification candidates, and the broad band images are available in electronic form (Voges et al. 1996a) via http://wave.xray.mpe.mpg.de/rosat/catalogues/rassbsc . 1
We have searched for solar axions or similar particles that couple to two photons by using the CERN Axion Solar Telescope (CAST) setup with improved conditions in all detectors. From the absence of excess X-rays when the magnet was pointing to the Sun, we set an upper limit on the axion-photon coupling of g aγ < 8.8 × 10 −11 GeV −1 at 95% CL for m a ∼ < 0.02 eV. This result is the best experimental limit over a broad range of axion masses and for m a ∼ < 0.02 eV also supersedes the previous limit derived from energy-loss arguments on globular-cluster stars.
the result using a 9 x 9 pixel gaussian filter Discovery of X-ray and Extreme (8). T h e HRI and WFC images similar pattern. T h e emission is clearly off-Ultraviolet Emission from set sunward in all ,. imkyges but one. [this .
Hypothetical axion-like particles with a two-photon interaction would be produced in the Sun by the Primakoff process. In a laboratory magnetic field ("axion helioscope") they would be transformed into X-rays with energies of a few keV. Using a decommissioned LHC test magnet, CAST ran for about 6 months during 2003. The first results from the analysis of these data are presented here. No signal above background was observed, implying an upper limit to the axion-photon coupling gaγ < 1.16 × 10 −10 GeV −1 at 95% CL for ma < ∼ 0.02 eV. This limit, assumption-free, is comparable to the limit from stellar energy-loss arguments and considerably more restrictive than any previous experiment over a broad range of axion masses.
After the unexpected discovery of x-rays emitted from comet C/1996 B2 (Hyakutake) with the Röntgen X-ray Satellite (ROSAT) in March 1996, x-ray emissions from comets C/1990 K1 (Levy), C/1990 N1 (Tsuchiya-Kiuchi), 45P (Honda–Mrkos–Pajdušáková), and C/1991 A2 (Arai), optically 300 to 30,000 times fainter than Hyakutake, were discovered in archival ROSAT data. These findings establish comets as a class of x-ray sources and allow their properties to be studied over a wide optical brightness range. The results indicate that charge exchange between highly charged heavy ions in the solar wind and cometary neutrals is the dominant process for the x-ray emission. Comets may thus be used as probes for monitoring the heavy-ion content of the solar wind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.