In practical applications of optimization it is common to have several conflicting objective functions to optimize. Frequently, these functions are subject to noise or can be of black-box type, preventing the use of derivative-based techniques.We propose a novel multiobjective derivative-free methodology, calling it direct multisearch (DMS), which does not aggregate any of the objective functions. Our framework is inspired by the search/poll paradigm of direct-search methods of directional type and uses the concept of Pareto dominance to maintain a list of nondominated points (from which the new iterates or poll centers are chosen). The aim of our method is to generate as many points in the Pareto front as possible from the polling procedure itself, while keeping the whole framework general enough to accommodate other disseminating strategies, in particular when using the (here also) optional search step. DMS generalizes to multiobjective optimization (MOO) all direct-search methods of directional type.We prove under the common assumptions used in direct search for single optimization that at least one limit point of the sequence of iterates generated by DMS lies in (a stationary form of) the Pareto front. However, extensive computational experience has shown that our methodology has an impressive capability of generating the whole Pareto front, even without using a search step.Two by-products of this paper are (i) the development of a collection of test problems for MOO and (ii) the extension of performance and data profiles to MOO, allowing a comparison of several solvers on a large set of test problems, in terms of their efficiency and robustness to determine Pareto fronts.
In order to correctly assess the biaxial fatigue material properties one must experimentally test different load conditions and stress levels. With the rise of new in-plane biaxial fatigue testing machines, using smaller and more efficient electrical motors, instead of the conventional hydraulic machines, it is necessary to reduce the specimen size and to ensure that the specimen geometry is appropriated for the load capacity installed. At the present time there are no standard specimen's geometries and the indications on literature how to design an efficient test specimen are insufficient. The main goal of this paper is to present the methodology on how to obtain an optimal cruciform specimen geometry, with thickness reduction in the gauge area, appropriated for fatigue crack initiation, as a function of the base material sheet thickness used to build the specimen. The geometry is optimized for maximum stress using several parameters, ensuring that in the gauge area the stress is uniform and maximum with two limit phase shift loading conditions. Therefore the fatigue damage will always initiate on the center of the specimen, avoiding failure outside this region. Using the Renard Series of preferred numbers for the base material sheet thickness as a reference, the reaming geometry parameters are optimized using a derivative-free methodology, called direct multi search (DMS) method. The final optimal geometry as a function of the base material sheet thickness is proposed, as a guide line for cruciform specimens design, and as a possible contribution for a future standard on in-plane biaxial fatigue tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.