B LYMPHOCYTES are key participants in the immune response because of their specificity, their ability to take up and present antigens to T cells, and their capacity to differentiate into antibody-secreting cells. To limit reactivity to self antigens, autospecific B cells can be functionally inactivated or deleted. Developing B cells that react with membrane antigens expressed in the bone marrow are deleted from the peripheral lymphocyte pool. It is important to ascertain the fate of B cells that recognize membrane autoantigens expressed exclusively on peripheral tissues because B cells in the peripheral lymphoid organs are phenotypically and functionally distinct from bone-marrow B cells. Here we show that in immunoglobulin-transgenic mice, B cells specific for major histocompatibility complex class I antigen can be deleted if they encounter membrane-bound antigen at a post-bone-marrow stage of development. This deletion may be necessary to prevent organ-specific autoimmunity.
Although convincing evidence has been obtained for the imposition of self-tolerance by the intrathymic deletion of self-reactive T cells, the development of tolerance to antigens which are expressed only in the periphery is not so well understood. We have approached this question by creating transgenic mice which carry a class I major histocompatibility complex (MHC) gene (H-2Kb) linked to the rat insulin promoter. Mice expressing the transgene develop diabetes, but do not appear to mount an immune response against the transgene-expressing pancreatic beta-cells, even when the transgene is allogeneic with respect to the endogenous host H-2 antigens. We have now explored the mechanism of this tolerance further. We find that spleen cells from pre-diabetic transgenic (RIP-Kb) mice do not kill targets bearing H-2Kb, whereas thymus cells from the same mice do. The unresponsiveness of these spleen cells can be reversed in vitro by providing recombinant interleukin-2 (rIL-2). In older, diabetic mice, responsiveness develops as the pancreatic beta-cells are lost. Our results point to an extrathymic mechanism of tolerance induction, dependent on the continuous presence of antigen and the lack of IL-2 in the local environment of potentially reactive T cells.
The Ly and Ia phenotypes of T lymphocytes involved in different functions were characterized by the use of specific antisera. T cells responsible for delayed-type hypersensitivity (DTH) and for helper functions were found to be Ly-1+,2- in contrast to cytotoxic T cells and T cells responsible for suppression of antibody responses which were Ly-1-,2+. Unlike some primed helper cells, T cells involved in DTH were Ia-. Suppressor cells in the system were Ia+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.