Summary Background Innate immunity contributes to the pathogenesis of autoimmune diseases, such as type 1 diabetes, but until now no randomised, controlled trials of blockade of the key innate immune mediator interleukin-1 have been done. We aimed to assess whether canakinumab, a human monoclonal anti-interleukin-1 antibody, or anakinra, a human interleukin-1 receptor antagonist, improved β-cell function in recent-onset type 1 diabetes. Methods We did two randomised, placebo-controlled trials in two groups of patients with recent-onset type 1 diabetes and mixed-meal-tolerance-test-stimulated C peptide of at least 0·2 nM. Patients in the canakinumab trial were aged 6–45 years and those in the anakinra trial were aged 18–35 years. Patients in the canakinumab trial were enrolled at 12 sites in the USA and Canada and those in the anakinra trial were enrolled at 14 sites across Europe. Participants were randomly assigned by computer-generated blocked randomisation to subcutaneous injection of either 2 mg/kg (maximum 300 mg) canakinumab or placebo monthly for 12 months or 100 mg anakinra or placebo daily for 9 months. Participants and carers were masked to treatment assignment. The primary endpoint was baseline-adjusted 2-h area under curve C-peptide response to the mixed meal tolerance test at 12 months (canakinumab trial) and 9 months (anakinra trial). Analyses were by intention to treat. These studies are registered with ClinicalTrials.gov, numbers NCT00947427 and NCT00711503, and EudraCT number 2007-007146-34. Findings Patients were enrolled in the canakinumab trial between Nov 12, 2010, and April 11, 2011, and in the anakinra trial between Jan 26, 2009, and May 25, 2011. 69 patients were randomly assigned to canakinumab (n=47) or placebo (n=22) monthly for 12 months and 69 were randomly assigned to anakinra (n=35) or placebo (n=34) daily for 9 months. No interim analyses were done. 45 canakinumab-treated and 21 placebo-treated patients in the canakinumab trial and 25 anakinra-treated and 26 placebo-treated patients in the anakinra trial were included in the primary analyses. The difference in C peptide area under curve between the canakinumab and placebo groups at 12 months was 0·01 nmol/L (95% CI −0·11 to 0·14; p=0·86), and between the anakinra and the placebo groups at 9 months was 0·02 nmol/L (−0·09 to 0·15; p=0·71). The number and severity of adverse events did not differ between groups in the canakinumab trial. In the anakinra trial, patients in the anakinra group had significantly higher grades of adverse events than the placebo group (p=0·018), which was mainly because of a higher number of injection site reactions in the anakinra group. Interpretation Canakinumab and anakinra were safe but were not effective as single immunomodulatory drugs in recent-onset type 1 diabetes. Interleukin-1 blockade might be more effective in combination with treatments that target adaptive immunity in organ-specific autoimmune disorders. Funding National Institutes of Health and Juvenile Diabetes Research Foundation.
Active acromegaly is characterized by inappropriate tissue growth, increased mortality, and perturbations of intermediary metabolism. It is, in general, not well described to which extent these disturbances are normalized after treatment of the disease. To further assess basal and insulin stimulated fuel metabolism in acromegaly six patients with monotropic GH excess were each studied approximately 1 month prior to and 2 months after successful selective pituitary adenomectomy and compared to a control population of seven subjects. The studies consisted of a 3-h basal postabsorptive period and a 2-h hyperinsulinaemic (0.4 mU/kg/min) euglycemic clamp and the methods employed included isotopical measurement of glucose turnover, indirect calorimetry, and the forearm technique. When compared to the control subjects the patients with acromegaly were preoperatively and in the basal state characterized by: 1) increased circulating concentrations of GH, insulin, and C-peptide (P less than 0.05); 2) increased plasma glucose (5.9 +/- 0.2 vs. 5.2 +/- 0.2 mmol/L), blood lactate (710 +/- 90 vs. 580 +/- 70 mumol/L), glucose turnover (2.34 +/- 0.12 vs. 1.93 +/- 0.12 mg/kg/min), and plasma lipid intermediates and a decreased forearm glucose uptake (0.06 +/- 0.02 vs. 0.19 +/- 0.04 mmol/L) (P less than 0.05); and 3) a 20% increase in energy expenditure, a 50% elevation of lipid oxidation rates, and a 130% elevation of nonoxidative glucose turnover (P less than 0.05). During the clamp the patients with active acromegaly were substantially resistant to the actions of insulin on both glucose and lipid metabolism. Following pituitary surgery all of these metabolic abnormalities were abolished. We conclude that active acromegaly is characterized by profound disturbances of not only glucose but also lipid metabolism, which in theory may precipitate the increased mortality in this disease. By showing that these abnormalities and the concomitant overall insulin resistance can be completely reversed our results may also have important implications for other insulin-resistant states and for the potential therapeutic use of GH.
To examine the insulin antagonistic effects of growth hormone (GH), seven healthy subjects underwent, in random order, two 5-h euglycemic clamp studies with moderate hyperinsulinemia. A GH infusion (45 ng.kg-1.min-1) was given throughout one of the studies. GH inhibited the insulin-stimulated glucose disposal by 27% from 4.4 +/- 0.7 to 3.3 +/- 0.4 mg.kg-1.min-1 (P less than 0.02) and raised the nonprotein energy expenditures (NPEE) from 18.7 +/- 0.5 to 20.5 +/- 0.3 kcal.kg-1.24 h-1 (P less than 0.03). Lipid oxidation contributed 71.7 +/- 5.6% of NPEE during the GH infusion as compared with 48.7 +/- 5.2% during the control clamp (P less than 0.02). In skeletal muscle biopsies, insulin binding to wheat germ agglutinin-purified insulin receptors and insulin receptor kinase activity were unaffected by GH infusion. Glycogen synthase activation by insulin was inhibited by 41% during the GH clamp (fractional velocity 14.1 +/- 2.5 vs. 8.3 +/- 1.4%, P less than 0.03). In conclusion, GH 1) increases energy expenditures and inhibits glucose oxidation in favor of an increased lipid oxidation, and 2) inhibits insulin-mediated activation of the glycogen synthase in skeletal muscle biopsies by a mechanism distal to insulin receptor binding and kinase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.