The JUNO experiment locates in Jinji town, Kaiping city, Jiangmen city, Guangdong province. The geographic location is east longitude 112 • 31'05' and North latitude 22 • 07'05'. The experimental site is 43 km to the southwest of the Kaiping city, a county-level city in the prefecture-level city Jiangmen in Guangdong province. There are five big cities, Guangzhou, Hong Kong, Macau, Shenzhen, and Zhuhai, all in ∼200 km drive distance, as shown in figure 3.
After the All-Sky Automated Survey for SuperNovae (ASAS-SN) discovered a significant brightening of the inner region of NGC 2617, we began a ∼ 70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such "changing look Active Galactic Nuclei (AGN)" are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole to be (4 ± 1) × 10 7 M ⊙ . When we crosscorrelate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2 − 3 days) to the NIR (6 − 9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a black hole of the estimated mass that is illuminated by the observed, variable X-ray fluxes.
If dark matter (DM) is a weakly interacting massive particle (WIMP) that is a thermal relic of the early Universe, then its total self-annihilation cross section is revealed by its present-day mass density. This result for a generic WIMP is usually stated as σv ≈ 3 × 10 −26 cm 3 s −1 , with unspecified uncertainty, and taken to be independent of WIMP mass. Recent searches for annihilation products of DM annihilation have just reached the sensitivity to exclude this canonical cross section for 100 % branching ratio to certain final states and small WIMP masses. The ultimate goal is to probe all kinematically allowed final states as a function of mass and, if all states are adequately excluded, set a lower limit to the WIMP mass. Probing the low-mass region is further motivated due to recent hints for a light WIMP in direct and indirect searches. We revisit the thermal relic abundance calculation for a generic WIMP and show that the required cross section can be calculated precisely. It varies significantly with mass at masses below 10 GeV, reaching a maximum of 5.2 × 10 −26 cm 3 s −1 at m ≈ 0.3 GeV, and is 2.2 × 10 −26 cm 3 s −1 with feeble mass-dependence for masses above 10 GeV. These results, which differ significantly from the canonical value and have not been taken into account in searches for annihilation products from generic WIMPs, have a noticeable impact on the interpretation of present limits from Fermi-LAT and WMAP+ACT.
We propose modifying large water C erenkov detectors by the addition of 0.2% gadolinium trichloride, which is highly soluble, newly inexpensive, and transparent in solution. Since Gd has an enormous cross section for radiative neutron capture, with summation operatorE(gamma)=8 MeV, this would make neutrons visible for the first time in such detectors, allowing antineutrino tagging by the coincidence detection reaction nu (e)+p-->e(+)+n (similarly for nu (mu)). Taking Super-Kamiokande as a working example, dramatic consequences for reactor neutrino measurements, first observation of the diffuse supernova neutrino background, galactic supernova detection, and other topics are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.