Sixty-four crossbred heifers (451 +/- 23 kg) were used in a 42-d feeding trial (4 pens per treatment in a randomized complete block design) to evaluate the influence of preslaughter zilpaterol hydrochloride withdrawal period on growth performance and carcass characteristics. Heifers were fed a diet based on steam-flaked corn (2.13 Mcal of NE(m)/kg). Treatments were 1) control, no zilpaterol supplementation; 2) zilpaterol supplementation for 30 d, drug withdrawn from the diet 3 d preslaughter (ZIL-3); 3) zilpaterol supplementation for 30 d, drug withdrawn 6 d preslaughter (ZIL-6), and 4) zilpaterol supplementation for 30 d, drug withdrawn 12 d preslaughter (ZIL-12). Zilpaterol was supplemented at the rate of 0.15 mg/kg of BW daily. Intake of DM averaged 9.2 +/- 0.26 kg/d and was not affected (P > or = 0.36) by treatment. Compared with control heifers, ZIL-3 increased (P < 0.01) carcass-adjusted ADG (59%), G:F (57%), apparent dietary NE(m) (31%), and decreased observed/expected DMI (25%). Treatment with ZIL-3 did not affect marbling score (P = 0.49) or backfat thickness (P = 0.17), but compared with the control group, increased HCW (3.6%, P = 0.03), carcass dressing percentage (3.2%, P = 0.02), LM area (6.3%, P = 0.05), and reduced trimmed fat (31%, P = 0.03). Prolonging the period of zilpaterol withdrawal preslaughter tended to decrease carcass-adjusted ADG (linear, P = 0.11), G:F (linear, P = 0.08), apparent dietary NE(m) (linear, P = 0.11), and carcass dressing percentage (linear, P = 0.11). We conclude that growth performance and carcass yield responses to zilpaterol supplementation are negatively affected by prolonging the period of zilpaterol withdrawal beyond 3 d (the required minimum withdrawal period according to label). Drug withdrawal period may be a relevant factor in explaining variation in performance response to zilpaterol supplementation in commercial feedlots.
Two trials were conducted to evaluate the influence of supplemental urea withdrawal on characteristics of digestion (Trial 1) and growth performance (Trial 2) of feedlot cattle during the last 40 days on feed. Treatments consisted of a steam-flaked corn-based finishing diet supplemented with urea to provide urea fermentation potential (UFP) of 0, 0.6, and 1.2%. In Trial 1, six Holstein steers (160 ± 10 kg) with cannulas in the rumen and proximal duodenum were used in a replicated 3 × 3 Latin square experiment. Decreasing supplemental urea decreased (linear effect, P ≤ 0.05) ruminal OM digestion. This effect was mediated by decreases (linear effect, P ≤ 0.05) in ruminal digestibility of NDF and N. Passage of non-ammonia and microbial N (MN) to the small intestine decreased (linear effect, P = 0.04) with decreasing dietary urea level. Total tract digestion of OM (linear effect, P = 0.06), NDF (linear effect, P = 0.07), N (linear effect, P = 0.04) and dietary DE (linear effect, P = 0.05) decreased with decreasing urea level. Treatment effects on total tract starch digestion, although numerically small, likewise tended (linear effect, P = 0.11) to decrease with decreasing urea level. Decreased fiber digestion accounted for 51% of the variation in OM digestion. Ruminal pH was not affected by treatments averaging 5.82. Decreasing urea level decreased (linear effect, P ≤ 0.05) ruminal N-NH and blood urea nitrogen. In Trial 2, 90 crossbred steers (468 kg ± 8), were used in a 40 d feeding trial (5 steers/pen, 6 pens/ treatment) to evaluate treatment effects on final-phase growth performance. Decreasing urea level did not affect DMI, but decreased (linear effect, P ≤ 0.03) ADG, gain efficiency, and dietary NE. It is concluded that in addition to effects on metabolizable amino acid flow to the small intestine, depriving cattle of otherwise ruminally degradable N (RDP) during the late finishing phase may negatively impact site and extent of digestion of OM, depressing ADG, gain efficiency, and dietary NE.
Eight Holstein steers (216±48 kg body weight) fitted with ruminal and duodenal cannulas were used to evaluate effects of wheat straw processing (ground vs pelleted) at two straw inclusion rates (7% and 14%; dry matter basis) in dry rolled or steam-flaked corn-based finishing diets on characteristics of digestion. The experimental design was a split plot consisting of two simultaneous 4×4 Latin squares. Increasing straw level reduced ruminal (p<0.01) and total tract (p = 0.03) organic matter (OM) digestion. As expected, increasing wheat straw level from 7% to 14% decreased (p<0.05) ruminal and total tract digestion of OM. Digestion of neutral detergent fiber (NDF) and starch, per se, were not affected (p>0.10) by wheat straw level. Likewise, straw level did not influence ruminal acetate and propionate molar proportions or estimated methane production (p>0.10). Pelleting straw did not affect (p≥0.48) ruminal digestion of OM, NDF, and starch, or microbial efficiency. Ruminal feed N digestion was greater (7.4%; p = 0.02) for ground than for pelleted wheat straw diets. Although ruminal starch digestion was not affected by straw processing, post-ruminal (p<0.01), and total-tract starch (p = 0.05) digestion were greater for ground than for pelleted wheat straw diets, resulting in a tendency for increased post-ruminal (p = 0.06) and total tract (p = 0.07) OM digestion. Pelleting wheat straw decreased (p<0.01) ruminal pH, although ruminal volatile fatty acids (VFA) concentration and estimated methane were not affected (p≥0.27). Ruminal digestion of OM and starch, and post-ruminal and total tract digestion of OM, starch and N were greater (p<0.01) for steam-flaked than for dry rolled corn-based diets. Ruminal NDF digestion was greater (p = 0.02) for dry rolled than for steam-flaked corn, although total tract NDF digestion was unaffected (p = 0.94). Ruminal microbial efficiency and ruminal degradation of feed N were not affected (p>0.14) by corn processing. However, microbial N flow to the small intestine and ruminal N efficiency (non-ammonia N flow to the small intestine/N intake) were greater (p<0.01) for steam-flaked than for dry rolled corn-based diets. Ruminal pH and total VFA concentration were not affected (p≥ 0.16) by corn processing method. Compared with dry rolled corn, steam-flaked corn-based diets resulted in decreased acetate:propionate molar ratio (p = 0.02). It is concluded that at 7% or 14% straw inclusion rate, changes in physical characteristics of wheat straw brought about by pelleting negatively impact OM digestion of both steam-flaked and dry-rolled corn-based finishing diets. This effect is due to decreased post-ruminal starch digestion. Replacement of ground straw with pelleted straw also may decrease ruminal pH.
Recent findings have shown that microbial nitrogen flow and digestible energy of diet are increased when urea (U) is combined with a slow-release urea product (SRU) in diets with a starch:acid detergent fibre (S:ADF) ratio of 4.5, while feed grade U has shown greater effects on growth performance or dietary energy utilization when the diet contains a S: ADF ratio of greater than 5.0. These results can be partially explained by the better synchronization of ruminal degradation rates between those U sources with the carbohydrates of the diets. Therefore, 60 crossbreed steers (372.4 ± 15 kg) were used to evaluate the effects of combining U and SRU in a diet with a S:ADF ratio of 4.5 vs. U that was supplemented in diets with different S:ADF ratios (3.5, 4.5 and 5.5) on growth performance, dietary energetics and carcass characteristics. U combination did not affect average daily gain (ADG), but reduced dry matter intake [DMI, as % of body weight (BW)] enough to increase feed efficiency (G:F) and dietary net energy (NE). As the S:ADF ratio increased, the DMI, ADG, G:F and NE of diet increased linearly. Irrespective of the S:ADF ratio, U diets did not modify neither the observed-to-expected NE ratio nor the apparent retention per unit DMI, while U combination increased by 7.2% and 8.4%, respectively, the observed-to-expected dietary ratio and the apparent retention per unit DMI. U combination had no effect on carcass characteristics. As the S:ADF ratio increased, carcass weight and LM area were increased linearly. Combining feed grade U and SRU in diets with a 4.5 starch:fibre ratio resulted in positive effects on the efficiency of utilization of dietary energetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.