Granular iron has been determined to be a potentially useful reductant for the removal of common organic contaminants from groundwater. This research is aimed at improving our understanding of the processes that control the reactivity and longevity of the iron particles when they are used for groundwater treatment. A suite of nitroaromatic compounds (NACs) including 4-chloronitrobenzene (4ClNB), 4-acetylnitrobenzene (4AcNB), nitrobenzene, 2-methylnitrobenzene (2MeNB), and 2,4,6-trinitrotoluene (TNT) was used to investigate granular iron reactivity in anoxic pH 10, 0.008 M KNO 3 solution. Master Builder's brand of granular iron with a surface area of about 1 m 2 /g was used in all experiments. The NACs were reduced rapidly to anilines that were found to sorb reasonably strongly to the solid particles and to interfere with the reduction of NACs. The granular iron was found to lose reactivity quite rapidly over the first few days of exposure and then more slowly over the next several months. Reactivity loss due to reversibly sorbed products was minimized by flushing the system with background electrolyte between experiments. Competition experiments with binary mixtures of 4ClNB and each one of the other NACs were performed to investigate relative affinities of these compounds for the solid surface. Despite the overall loss in reactivity observed for the granular iron, the relative rate constants in the competition experiments appeared to remain constant in time.
A novel method of measuring small-scale groundwater velocities in unconsolidated noncohesive media uses the travel time of a tracer pulse between an injection port and two detectors located on the surface of a cylindrical probe, called a point-velocity probe (PVP), as the basis for velocity estimation. The direction and magnitude of the water velocity vector were determined to within +/- 9% of magnitude and +/- 8 in direction, on average, in ten laboratory tank tests conducted with the PVP, when the velocities were between 5 and 98 cm/ day. Numerical simulations supported the accuracy of the underlying theory for interpretation of the PVP data and indicated that the technology is capable of measuring velocity at a very fine scale (0.5 cm around the circumference). The benchtop and modeling investigations indicated that the probe is moderately sensitive to the condition of the porous medium immediately next to the cylinder surface, suggesting that challenges exist for the deployment of the instrument in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.