Projecting cancer risks from exposure to space radiation is highly uncertain because of the absence of data for humans and because of the limited radiobiology data available for estimating late effects from the high-energy and charge (HZE) ions present in the galactic cosmic rays (GCR). Cancer risk projections involve many biological and physical factors, each of which has a differential range of uncertainty due to the lack of data and knowledge. We discuss an uncertainty assessment within the linear-additivity model using the approach of Monte Carlo sampling from subjective error distributions that represent the lack of knowledge in each factor to quantify the overall uncertainty in risk projections. Calculations are performed using the space radiation environment and transport codes for several Mars mission scenarios. This approach leads to estimates of the uncertainties in cancer risk projections of 400-600% for a Mars mission. The uncertainties in the quality factors are dominant. Using safety standards developed for low-Earth orbit, long-term space missions (>90 days) outside the Earth's magnetic field are currently unacceptable if the confidence levels in risk projections are considered. Because GCR exposures involve multiple particle or delta-ray tracks per cellular array, our results suggest that the shape of the dose response at low dose rates may be an additional uncertainty for estimating space radiation risks.
Standard methods for risk assessments resulting from human exposures to mixed radiation fields in Space consisting of different particle types and energies rely upon quality factors. These are generally defined as a function of linear energy transfer (LET) and are assumed to be proportional to the risk. In this approach, it is further assumed that the risks for single exposures from each of the radiation types add linearly. Although risks of cancer from acute exposures to photon radiations have been measured in humans, quality factors for protons and ions of heavier atomic mass are generally inferred from animal and/or cellular data. Because only a small amount of data exists for such particles, this group has been examining tumourigenesis initiated by energetic protons and iron ions. In this study, 741 female Sprague-Dawley rats were irradiated or sham irradiated at approximately 60 days of age with 250 MeV protons, 1 GeV/nucleon iron ions or both protons and iron ions. The results suggest that the risk of mammary tumours in the rats sequentially irradiated with 1 GeV/nucleon 56Fe ions and 250 MeV protons is less than additive. These data in conjunction with earlier results further suggest that risk assessments in terms of only mean LETs of the primary cosmic rays may be insufficient to accurately evaluate the relative risks of each type of particle in a radiation field of mixed radiation qualities.
We compare models of radiation transport and biological response to physical and biological dosimetry results from astronauts on the Mir space station. Transport models are shown to be in good agreement with physical measurements and indicate that the ratio of equivalent dose from the Galactic Cosmic Rays (GCR) to protons is about 3/2:1 and that this ratio will increase for exposures to internal organs. Two biological response models are used to compare to the Mir biodosimetry for chromosome aberration in lymphocyte cells; a track-structure model and the linear-quadratic model with linear energy transfer (LET) dependent weighting coefficients. These models are fit to in vitro data for aberration formation in human lymphocytes by photons and charged particles. Both models are found to be in reasonable agreement with data for aberrations in lymphocytes of Mir crew members: however there are differences between the use of LET dependent weighting factors and track structure models for assigning radiation quality factors. The major difference in the models is the increased effectiveness predicted by the track model for low charge and energy ions with LET near 10 keV/micrometers. The results of our calculations indicate that aluminum shielding, although providing important mitigation of the effects of trapped radiation, provides no protective effect from the galactic cosmic rays (GCR) in low-earth orbit (LEO) using either equivalent dose or the number of chromosome aberrations as a measure until about 100 g/cm 2 of material is used.
Abstract-This work provides information pertaining to the performance of Silicon-On-Insulator (SOI) microdosimeters in heavy ion radiation fields. SOI microdosimeters have been previously tested in light ion radiation fields for both space and therapeutic applications, however their response has not been established in high energy, heavy ion radiation fields which are experienced in space. Irradiations were completed at the NASA Space Radiation Laboratory at BNL using 0.6 GeV/u Fe and 1.0 GeV/u Ti ions. Energy deposition and lineal energy spectra were obtained with this device at various depths within a Lucite phantom along the central axis of the beam. The response of which was compared with existing proportional counter data to assess the applicability of SOI microdosimeters to future deployments in space missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.