Intraspecific genetic variation may contribute significantly to invasiveness and control problems, but has been characterized to date in relatively few invasive weed species. We examined 56 intersimple sequence repeat (ISSR) loci in 220 individuals from 11 invading populations of yellow toadflax sampled across five western states. All populations showed high levels of genetic diversity. Estimated values for Shannon's diversity measure ranged from 0.217 to 0.388, and for expected heterozygosity from 0.178 to 0.260. Nei's total gene diversity index (HT), on the basis of all individuals across all populations, was 0.267. Partitioning of genetic variance using analysis of molecular variance revealed 1.7% of genetic variation among regional population groups, 29.1% among populations within groups, and 69.2% within populations, consistent with expectations for an outcrossing species but suggesting little geographic differentiation. Pairs of adjacent individuals identical at all ISSR loci that appeared to be ramets of a single clone were detected in only one population. This indicates that patch expansion in yellow toadflax is driven more by sexual reproduction via seed than by rhizomatous clonal spread, at least at the spatial scale of sampling for this study. Eight populations had significant values for Mantel's R at P = 0.05, suggesting some fine-scale positive genetic structuring, possibly from restricted gene flow. Population clustering on the basis of Nei's genetic distance between populations and unweighted pair group method with arithmetic mean did not reflect geographic location. It is likely that multiple introductions of this species have occurred across the Intermountain West, followed by extensive genetic recombination. High levels of genetic diversity within yellow toadflax populations pose management challenges, as already seen in reports of variable response to herbicide application and limited impacts of biocontrol agent releases.
Transgenic crops among the most controversial "science and society" issues of recent years. Because of the complex techniques involved in creating these crops and the polarized debate over their risks and beliefs, a critical need has arisen for accessible and balanced information on this technology. World Wide Web sites offer several advantages for disseminating information on a fast-changing technical topic, including their global accessibility; and their ability to update information frequently, incorporate multimedia formats, and link to networks of other sites. An alliance between two complementary web sites at Colorado State University and the University of Nebraska-Lincoln takes advantage of the web environment to help fill the need for public information on crop genetic engineering. This article describes the objectives and features of each site. Viewership data and other feedback have shown these web sites to be effective means of reaching public audiences on a complex scientific topic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.