Following heat stress, the mammalian intestinal epithelial cells respond by producing heat shock proteins that confer protection under stressful conditions, which would otherwise lead to cell damage or death. Some of the noxious processes against which the heat shock response protects cells include heat stress, infection, and inflammation. The mechanisms of heat shock response-induced cytoprotection involve inhibition of proinflammatory cytokine production and induction of cellular proliferation for restitution of the damaged epithelium. This can mean selective interference of pathways, such as nuclear factor kappa B (NF-kappaB) and mitogen-activated protein kinase (MAPK), that mediate cytokine production and growth responses. Insight into elucidating the exact protective mechanisms could have therapeutic significance in treating intestinal inflammations and in aiding maintenance of intestinal integrity. Herein we review findings on heat shock response-induced intestinal epithelial protection involving regulation of NF-kappaB and MAPK cytokine production.
SummaryIntestinal epithelial cells secrete the chemokine interleukin (IL)-8 in the course of inflammation. Because heat shock proteins (Hsps) and butyrate confer protection to enterocytes, we investigated whether they modulate Salmonella enterica serovar Enteritidis ( S. In a dose-dependent manner, higher butyrate concentrations enhanced IL-8 secretion to maximal levels followed by a gradual but stable decline. This decline was associated with increasing production of Hsp70 and was more vivid in crypt-like cells. In addition, the higher concentrations abolished the heat shock inhibitory effect. Instead, they promoted the IL-8 production in heat-shocked cells even in the absence of S. serovar Enteritidis . We conclude that heat shock and low concentrations of butyrate inhibit IL-8 production by Caco-2 cells exposed to S. serovar Enteritidis . Higher butyrate concentrations stimulate the chemokine production and override the inhibitory effect of the heat shock. The IL-8 down-regulation could in part be mediated via production of Hsp70.
Arcelin-1 is a lectin-like protein found in the seeds of wild varieties of the kidney bean (Phaseolus vulgaris). This protein displays insecticidal properties, but the mechanism of action is as yet unknown. In the present study we investigated the biochemical and biophysical properties of arcelin-1 from Phaseolus vulgaris cv. RAZ-2. Native arcelin-1 is a dimeric glycoprotein of 60 kDa, built from the non-covalent association of two identical monomers. This dimer resists dissociation by chaotropic agents and is highly resistant to proteolytic enzymes. Each subunit contains 10% (w/w) neutral sugars which belong to the high-mannose and complex-type glycans attached to three glycosylation sites. No interaction of the protein with simple sugars could be detected, but arcelin-1 displays an intrinsic specificity in binding complex glycans. Arcelin-1 therefore differs from the closely related phytohaemagglutinin lectins and alpha-amylase inhibitor in several respects: oligomerization states, sugar-binding affinities and the type and number of glycan chains. These features may be related to the toxicity of arcelin-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.