Ergosterol biosynthesis in Saccharomyces cerevisiae is complex and the underlying mechanism of regulation remains unclear. To clarify the influence of transcriptional regulation on the ergosterol content, transcription factor Ecm22 was overexpressed in S. cerevisiae. Results showed that the overexpression of ECM22 led to an increased invasive growth. Fluconazole susceptibility testing indicated that strains overexpressing ECM22 could grow at 20 μg ml . By contrast, the control failed to grow at 16 μg ml . Among truncated ECM22 fragments, only the 1440-bp DNA fragment exerted almost the same impact on ergosterol content as that of the full-length gene. In a 5-l bioreactor, the highest ergosterol yield of the recombinant reached 32∙7 mg g , which was increased by about 20% compared with that of the control. In this work, a novel approach for enhancing the ergosterol production by overexpressing a transcription factor in S. cerevisiae was developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.