The plethora of design opportunities renders organic light emitting diodes (OLEDs) ideal luminaires for general lighting applications. Progressing from lab-scale device concepts to large-area applications calls for smart device designs that are scalable and, at the same time, unsusceptible to resistive losses within the electrodes. By employing direct pulsed femtosecond laser structuring, we fabricate OLED luminaires comprising monolithically interconnected OLED arrays. We determine the laser ablation thresholds and the optimized process parameters for all functional layers. The clean laser cuts with precise ablation depths show no detectable damage to adjacent layers or any ridges, hence avoiding unwanted short-cuts or device isolation. All processes are scalable. The 3-fold structuring of the OLED luminaire is confined within 45 μm and hence below the resolution limit of the human eye, yielding a geometric fill factor beyond 99% and therefore a very homogeneous device perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.