Simple tuneup of fast two-qubit gates is essential for the scaling of quantum processors. We introduce the sudden variant (SNZ) of the net zero scheme realizing controlled-Z (CZ) gates by flux control of transmon frequency. SNZ CZ gates realized in a multitransmon processor operate at the speed limit of transverse coupling between computational and noncomputational states by maximizing intermediate leakage. Beyond speed, the key advantage of SNZ is tuneup simplicity, owing to the regular structure of conditional phase and leakage as a function of two control parameters. SNZ is compatible with scalable schemes for quantum error correction and adaptable to generalized conditional-phase gates useful in intermediate-scale applications.
We present the use of a set of airbridges to trim the frequency of microwave coplanar-waveguide (CPW) resonators post-fabrication. This method is compatible with the fabrication steps of conventional CPW airbridges and crossovers and increases device yield by allowing compensation of design and fabrication uncertainty with 100 MHz range and 10 MHz resolution. We showcase two applications in circuit QED. The first is the elimination of frequency collisions between resonators intended to readout different transmons by frequency-division multiplexing. The second is frequency matching of readout and Purcell-filter resonator pairs. Combining this matching with transmon frequency trimming by laser annealing reliably achieves fast and high-fidelity readout across 17-transmon quantum processors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.