Holarctic biodiversity has been influenced by climatic fluctuations since the Pliocene. Asia Minor was one of the major corridors for postglacial invasions in the Palearctic. Today this area is characterized by an extraordinarily rich fauna with close affiliation to European, Asian and Indo‐African biota. However, exact scenarios of range expansion and contraction are lacking. Using a phylogeographical approach we (i) identify monophyletic lineages among Anatolian mountain frogs and (ii) derive a spatio‐temporal hypothesis for the invasion process in Anatolia. We sequenced 540 bp of the mitochondrial 16S rRNA gene from 40 populations of mountain frogs from Anatolia, the Elburz Mountains and the Caucasus. Our samples comprise all known species and subspecies: Rana macrocnemis macrocnemis, R. m. tavasensis, R. m. pseudodalmatina, R. camerani and R. holtzi. They include the type localities of four of these taxa. We used a nested clade analysis (NCA) to infer historical and recurrent events that account for the observed geographical distribution of haplotypes. None of the extant species is monophyletic. Based on a molecular clock calibration using homologous sequences of Western Palearctic water frogs of the same genus, we estimated that a basic radiation into three lineages c. 2 Mya was followed by several dispersal and fragmentation events. The geographical distribution of resident and widespread haplotypes allows us to infer and date scenarios of range expansion and fragmentation that are aligned with dramatic climatic oscillations that have occurred during the last 600 000 years. Consequently, Pliocene and Pleistocene climatic oscillations triggered the evolution of Anatolian mountain frogs through an interplay of vicariance and dispersal events.
The Persian dwarf snake Eirenis (Pseudocyclophis) persicus (Anderson, 1872) has a wide distribution range in south-western Asia. This species group was comprehensively studied here using traditional biometry, geometric morphometrics, ecological niche modelling, and genetics. Our analyses revealed that E. persicus is split into two clades. A western clade, bearing at least two different species: E. persicus, distributed in south-western Iran, and an undescribed species from south-eastern Turkey and western Iran. The eastern clade consists of at least three species: Eirenis nigrofasciatus, distributed across north-eastern Iraq, and western and southern Iran; Eirenis walteri, distributed across eastern Iran, southern Turkmenistan, and western and southern Pakistan, and Eirenis angusticeps, distributed in north-eastern Pakistan. Ecological niche modelling revealed that the distribution of the species in the western clade are mainly affected by winter precipitation, and those in the eastern clade are mainly affected by the minimum temperature of the coldest month. A molecular clock analysis revealed that the divergence and diversification of the E. persicus species group mainly correspond to Eocene to Pliocene orogeny events subsequent to the Arabia-Eurasia collision. This study confirms that specimens with the unique morphology of having 13 dorsal scale rows on the anterior dorsum, occurring in the Suleiman Mountains in central Pakistan, can be referred to Eirenis mcmahoni (Wall, 1911). However, at this moment we have insufficient data to evaluate the taxonomy of this species.
Eirenis thospitis n. sp. is described from Van in eastern Turkey, where it was collected on a dry mountain steppe habitat about 2000 m above sea level. The large-sized new taxon belongs to the collaris-group and is characterized by 15 dorsals around midbody, a short tail and the lack of dark transverse bands on pileus and neck.
The Hyrcanian Forests present a unique Tertiary relict ecosystem, covering the northern Elburz and Talysh Ranges (Iran, Azerbaijan), a poorly investigated, unique biodiversity hotspot with many cryptic species. Since the 1970s, two nominal species of Urodela, Hynobiidae, Batrachuperus (later: Paradactylodon) have been described: Paradactylodon persicus from northwestern and P. gorganensis from northeastern Iran. Although P. gorganensis has been involved in studies on phylogeny and development, there is little data on the phylogeography, systematics, and development of the genus throughout the Hyrcanian Forests; genome-wide resources have been entirely missing. Given the huge genome size of hynobiids, making whole genome sequencing hardly affordable, we aimed to publish the first transcriptomic resources for Paradactylodon from an embryo and a larva (9.17 Gb RNA sequences; assembled to 78,918 unigenes). We also listed 32 genes involved in vertebrate sexual development and sex determination. Photographic documentation of the development from egg sacs across several embryonal and larval stages until metamorphosis enabled, for the first time, comparison of the ontogeny with that of other hynobiids and new histological and transcriptomic insights into early gonads and timing of their differentiation. Transcriptomes from central Elburz, next-generation sequencing (NGS) libraries of archival DNA of topotypic P. persicus, and GenBank-sequences of eastern P. gorganensis allowed phylogenetic analysis with three mitochondrial genomes, supplemented by PCR-amplified mtDNA-fragments from 17 museum specimens, documenting <2% uncorrected intraspecific genetic distance. Our data suggest that these rare salamanders belong to a single species P. persicus s.l. Humankind has a great responsibility to protect this species and the unique biodiversity of the Hyrcanian Forest ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.