Summary
Tillage and traffic modify soil porosity and pore size distribution, leading to changes in the unsaturated hydraulic properties of the tilled layer. These changes are still difficult to characterize. We have investigated the effect of compaction on the change in the soil porosity and its consequences for water retention and hydraulic conductivity. A freshly tilled layer and a soil layer compacted by wheel tracks were created in a silty soil to obtain contrasting bulk densities (1.17 and 1.63 g cm−3, respectively). Soil porosity was analysed by mercury porosimetry, and scanning electron microscopy was used to distinguish between the textural pore space and the structural pore space. The laboratory method of Wind (direct evaporation) was used to measure the hydraulic properties in the tensiometric range. For water potentials < −20 kPa, the compacted layer retained more water than did the uncompacted layer, but the relation between the hydraulic conductivity and the water ratio (the volume of water per unit volume of solid phase) was not affected by the change in bulk density. Compaction did not affect the textural porosity (i.e. matrix porosity), but it created relict structural pores accessible only through the micropores of the matrix. These relict structural pores could be the reason for the change in the hydraulic properties due to compaction. They can be used as an indicator of the consequences of compaction on unsaturated hydraulic properties. The modification of the pore geometry during compaction results not only from a decrease in the volume of structural pores but also from a change in the relation between the textural pores and the remaining structural pores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.