The assay of CK-MB subforms reliably detected myocardial infarction within the first six hours after the onset of symptoms, and its use could reduce admission to the coronary care unit by 50 to 70 percent, thereby reducing costs.
Reperfusion after brief, reversible myocardial ischemia is associated with prolonged depression of contractile function (myocardial "stunning"); however, the effect on coronary vascular function has not been defined. Thus, open-chest dogs (n = 14) underwent a 15-minute left anterior descending coronary artery (LAD) occlusion followed by reflow. Four hours after reperfusion, regional myocardial blood flow (microspheres) was significantly (p less than 0.01) lower and coronary vascular resistance significantly (p less than 0.01) higher in the postischemic as compared with the nonischemic endocardium. Furthermore, during maximal vasodilation elicited by intravenous adenosine (n = 6), myocardial blood flow was lower (p less than 0.05) and coronary vascular resistance higher (p less than 0.05) in the postischemic as compared with the nonischemic myocardium, both in the endocardial and in the epicardial layers. Similarly, during maximal dilation elicited by intravenous papaverine (n = 8), myocardial blood flow was lower (p less than 0.05) and vascular resistance higher (p less than 0.05) in the postischemic as compared with the nonischemic endocardium; a directionally similar trend was observed in the epicardium. Four hours after reperfusion, all indexes of reactive hyperemia after a 40-second coronary occlusion were significantly lower in the LAD than in the control circumflex coronary artery (n = 8). There was no appreciable correlation between systolic wall thickening in the stunned myocardium and 1) the resting myocardial perfusion, 2) the hyperemia attained during adenosine or papaverine, and 3) the hyperemic response to a 40-second coronary occlusion. In control dogs that did not undergo a 15-minute LAD occlusion (n = 15), there were no differences in myocardial blood flow or vascular resistance between the LAD-dependent and the circumflex-dependent bed, either before or during adenosine (n = 7) or papaverine (n = 8). Furthermore, reactive hyperemia after a 40-second occlusion did not differ between the LAD and the circumflex artery (n = 8). In conclusion, a brief (15 minute), reversible ischemic insult causes a prolonged increase in resting vascular resistance and a prolonged impairment in vasodilator responsiveness, both of which persist for at least 4 hours. The severity of these vascular derangements is not related to the severity of contractile depression, suggesting that they may represent a relatively independent phenomenon. It is proposed that, in addition to myocardial "stunning," reversible ischemia also causes a microvascular "stunning."
Recent studies suggest that oxygen-derived free radicals contribute to the pathogenesis of postischemic myocardial dysfunction (myocardial "stunning"). This concept, however, is predicated exclusively on results obtained in open-chest preparations, which are subject to the confounding influence of many unphysiological conditions. The lack of supporting evidence in more physiological animal models represents a major persisting limitation of the oxy-radical hypothesis of myocardial stunning. The goal of this study was to address two fundamental (and related) occlusions). Despite the fact that the plasma levels of SOD and CAT declined rapidly after reperfusion, postischemic wall thickening was significantly greater in treated compared with control dogs throughout the first 6 hours of reflow. Thus, a brief (60-minute) infusion of SOD and CAT produced a sustained improvement of recovery of contractility. The magnitude of this beneficial effect was a function of the severity of ischemia: the lower the collateral perfusion, the greater the improvement effected by the enzymes. The accelerated recovery produced by SOD and CAT was not followed by any deterioration of contractility, suggesting that postischemic dysfunction is not a teleologically "protective" phenomenon. In conclusion, the severity of myocardial stunning is greatly exaggerated by the unphysiological conditions present in the barbiturate-anesthetized open-chest dog. However, antioxidant therapy does attenuate myocardial stunning in the conscious dog, indicating that oxygen radicals play a pathogenetic role that is independent of the abnormal conditions associated with the open-chest preparation. (Circulation Research 1991;69:731-747) ecent studiesl-15 suggest that oxygen-derived anesthetized, open-chest preparations.1-15 To our free radicals contribute to the pathogenesis knowledge, no information is available regarding the of postischemic myocardial dysfunction effect of antioxidant therapy on myocardial stunning (myocardial "stunning"'6). The validity of this conafter brief (<20 minutes) ischemia in the conscious cept, however, is limited by the fact that it is predianimal. Several investigators17-28 have pointed out cated exclusively on results obtained in barbiturate-that observations in open-chest models may be con-
IntroductionConscious dogs undergoing a 15-min coronary occlusion were given a-phenyl N-tert-butyl nitrone (PBN) and the local coronary venous plasma was analyzed by electron paramagnetic resonance spectroscopy. A prolonged myocardial release of PBN radical adducts was observed, which exhibited a burst in the initial minutes of reflow (peaking at 3 min) and then abated but continued for 1-3 h after reperfusion. Recent studies using spin trapping techniques ( 1-7) support the hypothesis that oxygen-derived free radicals contribute to the pathogenesis of postischemic myocardial dysfunction (myocardial "stunning" [8]). These studies have shown that free radicals are generated in various animal models ofstunned myocardium ( 1, 2, 7), and that the generation ofthe radicals is inhibited by the same antioxidants that attenuate postischemic dysfunction (3-7).
Open-chest dogs (total number used, 117) underwent 10 5-min coronary occlusions (0) interspersed with 10 min of reperfusion (R). When systolic thickening fraction was measured 9 min after each R, the first O-R cycle was found to cause the largest decrement, with only a slight additional loss during the next four cycles and no further loss during the last five cycles (group IV), suggesting that the first few episodes of ischemia preconditioned the myocardium against the stunning induced by the last five episodes. However, different results were obtained when the total deficit of wall thickening during the final 4-h R interval was measured. The total deficit was similar after one and three 5-min o (groups V and VI, respectively), indicating that the first ischemic episode did precondition against the next two episodes; however, it was 2.5-fold greater after 10 0 (group IV) than after 3, indicating that the first 3 episodes failed to precondition against the next 7. Thus, at some point between the 4th and 10th 0, the preconditioning effect was lost and recurrent ischemic episodes started to have a cumulative effect. Measurements of free radicals with a-phenyl N-tert-butyl nitrone (PBN) demonstrated a burst of free radical generation immediately after the 1st, 5th, and 10th R (group VIII). The total cumulative release of PBN adducts during the initial 5 min of reflow was 58% less after the 5th R than after the 1st (P < 0.05) but did not differ significantly between the 1st and 10th R. When administered throughout the 10 O-R cycles, the -OH scavenger mercaptopropionyl glycine significantly enhanced the recovery of function (group I) and markedly suppressed the formation of free radicals (group VII). However, the beneficial effects of mercaptopropionyl glycine were completely, or largely, lost if the drug was discontinued after the first five (group II) or eight (group III) O-R cycles, respectively, implying that (a) the oxidative stress associated with the last five, or even two, cycles was sufficient to cause severe postischemic dysfunction, and (b) the cumulative injury caused by repetitive ischemic episodes is mediated by recurrent oxidative stress. This study provides direct in vivo evidence that oxygen radicals play an important role in the pathogenesis of myocardial stunning after repetitive ischemia, and implicates -OH as a primary culprit. Taken together, the data indicate that recurrent brief ischemic episodes result in recurrent bouts of oxyradical-mediated injury that have a cumulative effect on contractility, a situation that could lead to protracted or even chronic myocardial stunning. (J. Clin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.