Purpose: HDR brachytherapy combines steep dose gradients in space and time, thereby requiring detectors of high spatial and temporal resolution to perform accurate treatment monitoring. We demonstrate a miniaturized fiber-integrated scintillator detector (MSD) of unmatched compactness which fulfills these conditions. Methods: The MSD consists of a 0.24 mm large and 0.3 mm long detection cell (Gd2O2S:Tb) coupled to a 70-micron outer diameter silica optical fiber. The fiber probe is tested in a phantom using a MicroSelectron 9.1 Ci Ir-192 HDR afterloader. The detection signal is acquired at a rate of 0.08 s with a standard sCMOS camera coupled to a chromatic filter (to cancel spurious Cerenkov signal). The dwell position and time monitoring are analyzed over prostate treatment sequences with dwell times spanning from 0.1 s to 11 s. The dose rate at the probe position is both evaluated from a direct measurement and by reconstruction from the measured dwell position using the AAPM TG-43 formalism. Results: A total number of 1384 dwell positions are analyzed. In average, the measured dwell positions differ by 0.023 ± 0.077 mm from planned values over a 6-54 mm source-probe distance range. The standard deviation of the measured dwell positions is below 0.8 mm. 94 % of the 966 dwell positions occurring at a source-probe inter-catheter spacing below 20 mm are successfully identified, with a 100% detection rate for dwell times exceeding 0.5 s. The average deviation to the planned dwell times is of 0.005 +/- 0.060 s. The instant dose retrieval from dwell position monitoring leads to a relative mismatch to planned values of 0.14 ± 0.7 %. Conclusion: A miniaturized Gd2O2S:Tb detector coupled to a standard sCMOS camera can be used for time-resolved treatment monitoring in HDR Brachytherapy
The concept of a miniaturized inorganic scintillator detector is demonstrated in the analysis of the small static photon fields used in external radiation therapy. Such a detector is constituted by a 0.25 mm diameter and 0.48 mm long inorganic scintillating cell (1.6 × 10−5 cm3 detection volume) efficiently coupled to a narrow 125 μm diameter silica optical fiber using a tiny photonic interface (an optical antenna). The response of our miniaturized scintillator detector (MSD) under 6 MV bremsstrahlung beam of various sizes (from 1 × 1 cm2 to 4 × 4 cm2) is compared to that of two high resolution reference probes, namely, a micro-diamond detector and a dedicated silicon diode. The spurious Cerenkov signal transmitted through our bare detector is rejected with a basic spectral filtering. The MSD shows a linear response regarding the dose, a repeatability within 0.1% and a radial directional dependence of 0.36% (standard deviations). Beam profiling at 5 cm depth with the MSD and the micro-diamond detector shows a mismatch in the measurement of the full widths at 80% and 50% of the maximum which does not exceed 0.25 mm. The same difference range is found between the micro-diamond detector and a silicon diode. The deviation of the percentage depth dose between the MSD and micro-diamond detector remains below 2.3% within the first fifteen centimeters of the decay region for field sizes of 1 × 1 cm2, 2 × 2 cm2 and 3 × 3 cm2 (0.76% between the silicon diode and the micro-diamond in the same field range). The 2D dose mapping of a 0.6 × 0.6 cm2 photon field evidences the strong 3D character of the radiation-matter interaction in small photon field regime. From a beam-probe convolution theory, we predict that our probe overestimates the beam width by 0.06%, making our detector a right compromise between high resolution, compactness, flexibility and ease of use. The MSD overcomes problem of volume averaging, stem effects, and despite its water non-equivalence it is expected to minimize electron fluence perturbation due to its extreme compactness. Such a detector thus has the potential to become a valuable dose verification tool in small field radiation therapy, and by extension in Brachytherapy, FLASH-radiotherapy and microbeam radiation therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.