The twin Van Allen Probe spacecraft, launched in August 2012, carry identical scientific payloads. The Electric and Magnetic Field Instrument Suite and Integrated Science suite includes a plasma wave instrument (Waves) that measures three magnetic and three electric components of plasma waves in the frequency range of 10 Hz to 12 kHz using triaxial search coils and the Electric Fields and Waves triaxial electric field sensors. The Waves instrument also measures a single electric field component of waves in the frequency range of 10 to 500 kHz. A primary objective of the higher-frequency measurements is the determination of the electron density ne at the spacecraft, primarily inferred from the upper hybrid resonance frequency fuh. Considerable work has gone into developing a process and tools for identifying and digitizing the upper hybrid resonance frequency in order to infer the electron density as an essential parameter for interpreting not only the plasma wave data from the mission but also as input to various magnetospheric models. Good progress has been made in developing algorithms to identify fuh and create a data set of electron densities. However, it is often difficult to interpret the plasma wave spectra during active times to identify fuh and accurately determine ne. In some cases, there is no clear signature of the upper hybrid band, and the low-frequency cutoff of the continuum radiation is used. We describe the expected accuracy of ne and issues in the interpretation of the electrostatic wave spectrum.
With the advent of the Heliophysics/Geospace System Observatory (H/GSO), a complement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), a grass-roots software development platform ( www.spedas.org ), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have “crib-sheets,” user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer’s Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its “modes of use” with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans. Electronic Supplementary Material The online version of this article (10.1007/s11214-018-0576-4) contains supplementary material, which is available to authorized users.
Electron density measurements have been obtained by the Cassini Radio and Plasma Wave Science (RPWS) instrument for more than 50 passes through Saturn's inner magnetosphere from 30 June 2004 to 30 September 2007. The electron densities are derived from RPWS measurements of the upper hybrid resonance frequency and span latitudes up to 35° and L values from 3.6 to 10. The electron density measurements are combined with ion anisotropy measurements from the Cassini Plasma Spectrometer (CAPS) and electron temperature measurements from the RPWS and CAPS to develop a diffusive equilibrium model for the distribution of water group ions, hydrogen ions, and electrons in the inner region of Saturn's magnetosphere. The model uses an analytical solution of the field‐aligned force equation, including the ambipolar electric field, to determine the equatorial ion densities and scale heights as a function of L. Density contour plots for water group ions, hydrogen ions, and electrons are presented.
Whistler‐mode chorus emission is important in the scattering and acceleration of electrons and filling of the radiation belts at Jupiter. In this work whistler mode magnetic intensity levels at Jupiter are comprehensively binned and parameterized. The frequency range of whistler mode under study extends from the proton cyclotron frequency, fcH, to fceq/2, where fceq is the cyclotron frequency mapped to the magnetic equator. Parametric dependence of magnetic plasma wave intensity is obtained versus frequency, latitude, and M‐shell, as determined using a current magnetic field model based on Juno data. The results extend similar analyses of Jupiter whistler‐mode emission obtained by the Galileo spacecraft, particularly on the nightside, and provide better coverage in latitude. Peaks in whistler‐mode emission occur near M ∼ 8–9, similar to previous studies, with average peak intensities approaching 10−2 nT2, as also found by Galileo on the dayside. Auroral hiss and probably Z‐mode are observed at higher latitudes. Jovian chorus emissions near an equatorial source region are more broad‐banded than terrestrial chorus, and are coincident with a broad‐banded electron distribution of free energy and strong electron scattering to large pitch angles. Intense whistler mode within a young plasma injection region is also observed, similar to injections in Saturn's magnetosphere. Future study of wave particle interactions within the chorus source region will be important. Possible Z‐mode emission at significant intensity levels is observed in Jupiter's inner magnetosphere, more intense, but not unlike Z‐mode observed at Saturn.
Electron density measurements derived from the upper hybrid resonance frequency have been obtained from the Cassini Radio and Plasma Wave Science experiment over a 7 year period from 28 October 2004 through 7 November 2011. Additional density measurements inside the orbit of Enceladus and outside the orbit of Rhea have made it possible to expand a previously published density model to radial distances from 2.6 to 10.0 Saturnian radii (RS). The distribution of density data is compared to a simple scale height density model for a single‐species plasma within 8° of the magnetic equatorial plane. There is a broad peak in the equatorial density distribution between 4 RS and 5 RS with the plasma falling off both inward and outward from the peak region. The radial dependence of the equatorial density profile varies as R4.0 from 2.6 RS to 4 RS and as R–4.8 from 5 RS to 10 RS. The plasma distribution outside 5 RS remains consistent with earlier density models but additional density measurements inside 4 RS provide information on the plasma distribution in this inner region that will be the focus of the F‐Ring and proximal orbits near the end of the Cassini mission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.