The introduction of artificial intelligence (AI) and machine learning (ML) technologies in recent years has resulted in improved company performance. Customer churn forecast is a difficult problem in many corporate sectors, particularly the telecommunications industry. Because customer churns have a direct impact on a company's total revenue, telecommunications firms have begun to develop 76 models to reduce churns at an earlier stage. Previous research has revealed that AI and ML models are effective CCP solutions. According to this viewpoint, this study proposes a unique AI-based CCP model for Telecommunication Business Markets (AICCP-TBM). The AICCP-TBM model's purpose is to control the existence of churners and non-churners in the telecom sector. The proposed AICCP-TBM model employs a Chaotic Salp Swarm Optimization-based Feature Selection (CSSO-FS) method for the best feature assortment. In addition, a Fuzzy Rule-based Classifier(FRC) is used to distinguish between client churners and non-churners. A technique known as Quantum Behaved Particle Swarm Optimization (QPSO) is used to pick the membership functions for the FRC model in order to improve the classification performance of the FRC model. The performance of the AICCP-TBM model is validated using a benchmark CCP dataset and the experimental results are reviewed from several angles. In relations of presentation, the imitation consequences demonstrated that the AICCP-TBM model surpassed the most recent state-of-the-art CPP models. The suggested AICCP-TBM method's comparative accuracy was thoroughly tested on the three datasets used. Using datasets 1-3, this technique obtained better levels of accuracy, with the maximum attainable values being 97.25 %, 97.5 % and 94.33 %. The simulation results for the AICCP-TBM model demonstrated improved prediction performance.
The stock market is an important domain in which the investors are focused to, therefore accurate prediction of stock market trends remains a hot research area among business-people and researchers. Because of the non-stationary features of the stock market, the stock price prediction is considered a challenging task and is affected by several factors. Anticipating stock market trends is a difficult endeavor that requires a lot of attention, because correctly predicting stock prices can lead to significant rewards if the right judgments are made. Due to non-stationary, noisy, and chaotic data, stock market prediction is a huge difficulty, and as a result, investors find it difficult to invest their money in order to make a profit. In order to predict stock market movements, a number of strategies have been established. Earlier studies based on statistical models and machine learning techniques have been focused on short term stock price prediction. In this aspect, this study designs a novel hyperparameter tuned hybrid convolutional neural network with long short term memory (HPT-HCLSTM) for stock price prediction. The proposed HPT-HCLSTM technique encompasses three different processes namely pre-processing, prediction, and parameter optimization. The HPT-HCLSTM technique employs the HCLSTM technique for the prediction of stock prices. In addition, teaching and learning based optimization (TLBO) algorithm is applied for the hyperparameter optimization of the HCLSTM technique and thereby results in minimal error values. In order to demonstrate the enhanced prediction performance of the HPT-HCLSTM technique, a wide range of simulations were carried out and the results highlighted the better performance of the HPT-HCLSTM technique under several aspects. The HPT-HCLSTM technique is found to be a proper tool for forecasting stock prices. the HPT-HCLSTM technique has showcased better performance with the increased R2 value of 0.9154.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.