We present the convergence analysis of an efficient numerical method for the solution of an initial-boundary value problem for a scalar nonlinear conservation law equation with a diffusion term. Nonlinear convective terms are approximated with the aid of a monotone finite volume scheme considered over the finite volume mesh dual to a triangular grid, whereas the diffusion term is discretized by piecewise linear conforming triangular elements. Under the assumption that the triangulations are of weakly acute type, with the aid of the discrete maximum principle, a priori estimates, and some compactness arguments based on the use of the Fourier transform with respect to time, the convergence of the approximate solutions to the exact solution is proved, provided that the mesh size tends to zero.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.