We evaluate the exposure during nadir observations with JEM-EUSO, the Extreme Universe Space Obser-\ud
vatory, on-board the Japanese Experiment Module of the International Space Station. Designed as a mis-\ud
sion to explore the extreme energy Universe from space, JEM-EUSO will monitor the Earth’s nighttime\ud
atmosphere to record the ultraviolet light from tracks generated by extensive air showers initiated by\ud
ultra-high energy cosmic rays. In the present work, we discuss the particularities of space-based obser-\ud
vation and we compute the annual exposure in nadir observation. The results are based on studies of the\ud
expected trigger aperture and observational duty cycle, as well as, on the investigations of the effects of\ud
clouds and different types of background light. We show that the annual exposure is about one order of\ud
magnitude higher than those of the presently operating ground-based observatories
On October 8 th , 2011 the Earth crossed the dust trails left by comet 21P/Giacobini-Zinner during its XIX and XX century perihelion approaches with the comet being close to perihelion. The geometric circumstances of that encounter were thus favorable to produce a meteor storm, but the trails were much older than in the 1933 and 1946 historical encounters. As a consequence the 2011 October Draconid display exhibited several activity peaks with Zenithal Hourly Rates of about 400 meteors per hour. In fact, if the display had been not forecasted, it could have passed almost unnoticed as was strongly attenuated for visual observers due to the Moon. This suggests that most meteor storms of a similar nature could have passed historically unnoticed under unfavorable weather and Moon observing conditions. The possibility of obtaining information on the physical properties of cometary meteoroids penetrating the atmosphere under low-geocentric velocity encounter circumstances motivated us to set up a special observing campaign. Added to the Spanish Fireball Network wide-field allsky and CCD video monitoring, other high-sensitivity 1/2" black and white CCD video cameras were attached to modified medium-field lenses for obtaining high resolution orbital information. The trajectory, radiant, and orbital data of 16 October Draconid meteors observed at multiple stations are presented. The results show that the meteors appeared from a geocentric radiant located at =263.00.4º and =+55.30.3º that is in close agreement with the radiant predicted for the 1873-1894 and the 1900 dust trails. The estimated mass of material from 21P/Giacobini-Zinner delivered to Earth during the six-hours outburst was around 950150 kg.2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.