The ionization region model (IRM) is applied to model a high power impulse magnetron sputtering discharge with a tungsten target. The IRM gives the temporal variation of the various species and the average electron energy, as well as internal discharge parameters such as the ionization probability and the back-attraction probability of the sputtered species. It is shown that an initial peak in the discharge current is due to argon ions bombarding the cathode target. After the initial peak the W+ ions become the dominating ions and remain as such to the end of the pulse. We demonstrate how the contribution of the W+ ions to the total discharge current at the target surface increases with increased discharge voltage for peak current density JD,peak in the range 0.33 – 0.73 A/cm2. For the sputtered tungsten the ionization probability increases, while the back-attraction probability decreases with increasing discharge voltage. Furthermore, we discuss the findings in terms of the generalized recycling model and compare to experimentally determined deposition rates and find good agreement.
Magnetron sputtering combines a glow discharge with sputtering from a target that simultaneously serves as a cathode for the discharge. The electrons of the discharge are confined between overarching magnetic field lines and the negatively biased cathode. As the target erodes during the sputter process, the magnetic field strengthens in the cathode vicinity, which can influence discharge parameters with the risk of impairing reproducibility of the deposition process over time. This is of particular concern for high-power impulse magnetron sputtering (HiPIMS) as the discharge current and voltage waveforms vary strongly with the magnetic field strength. We here discuss ways to limit the detrimental effect of target erosion on the film deposition process by choosing an appropriate mode of operation for the discharge. The goal is to limit variations of two principal flux parameters, the deposition rate and the ionized flux fraction. As an outcome of the discussion, we recommend operating HiPIMS discharges by maintaining the peak discharge current constant.
The angular dependence of the deposition rates due to ions and neutrals in high-power impulse magnetron sputtering (HiPIMS) discharges with a titanium target were determined experimentally using a magnetically shielded and charge-selective quartz crystal microbalance (or ionmeter). These rates have been established as a function of the argon working gas pressure, the peak discharge current density, and the pulse length. For all explored cases, the total deposition rate exhibits a heart-shaped profile and the ionized flux fraction peaks on the discharge axis normal to the cathode target surface. This heart-shaped pattern is found to be amplified at increasing current densities and reduced at increased working gas pressures. Furthermore, it is confirmed that a low working gas pressure is beneficial for achieving high deposition rates and high ionized flux fractions in HiPIMS operation.
In magnetron sputtering, only a fraction of the sputtered target material leaving the ionization region is directed toward the substrate. This fraction may be different for ions and neutrals of the target material as the neutrals and ions can exhibit a different spread as they travel from the target surface toward the substrate. This difference can be significant in high power impulse magnetron sputtering (HiPIMS) where a substantial fraction of the sputtered material is known to be ionized. Geometrical factors or transport parameters that account for the loss of produced film-forming species to the chamber walls are needed for experimental characterization and modeling of the magnetron sputtering discharge. Here, we experimentally determine transport parameters for ions and neutral atoms in a HiPIMS discharge with a titanium target for various magnet configurations. Transport parameters are determined to a typical substrate, with the same diameter (100 mm) as the cathode target, and located at a distance 70 mm from the target surface. As the magnet configuration and/or the discharge current are changed, the transport parameter for neutral atoms [Formula: see text] remains roughly the same, while transport parameters for ions [Formula: see text] vary greatly. Furthermore, the relative ion-to-neutral transport factors, [Formula: see text], that describe the relative deposited fractions of target material ions and neutrals onto the substrate, are determined to be in the range from 0.4 to 1.1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.