Xylan, a hemicellulosic component of the plant cell wall, is one of the most abundant polysaccharides in nature. In contrast to dicots, xylan in grasses is extensively modified by α-(1,2)-and α-(1,3)-linked arabinofuranose. Despite the importance of grass arabinoxylan in human and animal nutrition and for bioenergy, the enzymes adding the arabinosyl substitutions are unknown. Here we demonstrate that knocking-down glycosyltransferase (GT) 61 expression in wheat endosperm strongly decreases α-(1,3)-linked arabinosyl substitution of xylan. Moreover, heterologous expression of wheat and rice GT61s in Arabidopsis leads to arabinosylation of the xylan, and therefore provides gain-of-function evidence for α-(1,3)-arabinosyltransferase activity. Thus, GT61 proteins play a key role in arabinoxylan biosynthesis and therefore in the evolutionary divergence of grass cell walls.type II cell walls | second-generation biofuels | dietary fiber C ell walls provide shape and strength to different plant cell types and, moreover, constitute the majority of plant biomass. The cell wall composition of grasses, including the three most productive food crops, rice, wheat, and maize, and the energy crops miscanthus and sugarcane, diverged during evolution from dicots. A major distinguishing feature of grass cell walls is the prevalence and structure of the hemicellulosic component xylan (1). Xylan consists of a linear β-(1,4)-D-xylopyranose (Xylp) chain. It is most commonly substituted by arabinofuranose (Araf) on the C2-or C3-position in arabinoxylan (AX), and (4-O-methyl-) glucuronosyl side chains on the C2-position in glucuronoarabinoxylan (GAX) and glucuronoxylan (GX). The primary and secondary cell walls of grasses contain substantial amounts of GAX, which is also found in primary cell walls of dicots, but at much lower abundance (1, 2). In contrast, xylan in secondary cell walls of dicots is relatively abundant but devoid of arabinosyl side chains (2). The functional significance of the different side chains in planta is largely unknown. In grasses α-(1-3)-linked arabinofuranosyl substitutions can be esterified with p-coumaric or ferulic acid, the latter forming cross-links with other (G)AX chains (3) or with lignin (4). Cross-linking of cell-wall polymers is critical in limiting the digestibility of polysaccharides for bioenergy production and animal feed. In addition, AX has a role as dietary fiber in human foods, particularly in wheat flour, where it constitutes 65-70% of the nonstarch polysaccharide (5). The degree of arabinosylation and feruloylation of AX also determines whether it occurs as soluble or insoluble dietary fiber, which confer different benefits to human health (6).In Arabidopsis thaliana (Arabidopsis), several glycosyltransferases of the GT43 and GT47 families have been shown to be involved in the biosynthesis of the xylan backbone, including IRX9, IRX10, and IRX14 (2). The only enzymes characterized so far that decorate the xylan backbone are members of the GT8 family, GUX1 and GUX2, which are required for gl...
Fourier transform infrared (FT-IR) spectroscopy was used to monitor changes in the secondary structure of wheat prolamins, the main components of gluten, during mechanical deformation in a series of cycles of extension and relaxation. A sample derived from protein bodies isolated from developing grain showed a buildup of persistent beta-sheet structure. In gluten, the ratio of beta-sheet to random and beta-turn structures changed on extension. After the applied force was released, the sample recovered some of its original shape and structure, but the material became stiffer in consecutive extension cycles. The relationship between gluten structure and mechanical properties is discussed in terms of a model in which conversion of beta-turn to beta-sheet structure is a response to extension and a means by which elastic energy is stored in the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.