Using data for 25,780 species categorized on the International Union for Conservation of Nature Red List, we present an assessment of the status of the world’s vertebrates. One-fifth of species are classified as Threatened, and we show that this figure is increasing: On average, 52 species of mammals, birds, and amphibians move one category closer to extinction each year. However, this overall pattern conceals the impact of conservation successes, and we show that the rate of deterioration would have been at least one-fifth again as much in the absence of these. Nonetheless, current conservation efforts remain insufficient to offset the main drivers of biodiversity loss in these groups: agricultural expansion, logging, overexploitation, and invasive alien species
Supertree and supermatrix methods have great potential in the quest to build the tree of life and yet they remain controversial, with most workers opting for one approach or the other, but rarely both. Here, we employed both methods to construct phylogenetic trees of all genera of palms (Arecaceae/Palmae), an iconic angiosperm family of great economic importance. We assembled a supermatrix consisting of 16 partitions, comprising DNA sequence data, plastid restriction fragment length polymorphism data, and morphological data for all genera, from which a highly resolved and well-supported phylogenetic tree was built despite abundant missing data. To construct supertrees, we used variants of matrix representation with parsimony (MRP) analysis based on input trees generated directly from subsamples of the supermatrix. All supertrees were highly resolved. Standard MRP with bootstrap-weighted matrix elements performed most effectively in this case, generating trees with the greatest congruence with the supermatrix tree and fewest clades unsupported by any input tree. Nonindependence due to input trees based on combinations of data partitions was an acceptable trade-off for improvements in supertree performance. Irreversible MRP and the use of strictly independent input trees only provided no obvious benefits. Contrary to previous claims, we found that unsupported clades are not infrequent under some MRP implementations, with up to 13% of clades lacking support from any input tree in some irreversible MRP supertrees. To build a formal synthesis, we assessed the cross-corroboration between supermatrix trees and the variant supertrees using semistrict consensus, enumerating shared clades and compatible clades. The semistrict consensus of the supermatrix tree and the most congruent supertree contained 160 clades (of a maximum of 204), 137 of which were present in both trees. The relationships recovered by these trees strongly support the current phylogenetic classification of palms. We evaluate 2 composite supertree support measures (rQS and V) and conclude that it is more informative to report numbers of input trees that support or conflict with a given supertree clade. This study demonstrates that supertree and supermatrix methods can provide effective, explicit, and complimentary mechanisms for synthesizing disjointed phylogenetic evidence while emphasizing the need for further refinement of supertree methods.
Xylan, a hemicellulosic component of the plant cell wall, is one of the most abundant polysaccharides in nature. In contrast to dicots, xylan in grasses is extensively modified by α-(1,2)-and α-(1,3)-linked arabinofuranose. Despite the importance of grass arabinoxylan in human and animal nutrition and for bioenergy, the enzymes adding the arabinosyl substitutions are unknown. Here we demonstrate that knocking-down glycosyltransferase (GT) 61 expression in wheat endosperm strongly decreases α-(1,3)-linked arabinosyl substitution of xylan. Moreover, heterologous expression of wheat and rice GT61s in Arabidopsis leads to arabinosylation of the xylan, and therefore provides gain-of-function evidence for α-(1,3)-arabinosyltransferase activity. Thus, GT61 proteins play a key role in arabinoxylan biosynthesis and therefore in the evolutionary divergence of grass cell walls.type II cell walls | second-generation biofuels | dietary fiber C ell walls provide shape and strength to different plant cell types and, moreover, constitute the majority of plant biomass. The cell wall composition of grasses, including the three most productive food crops, rice, wheat, and maize, and the energy crops miscanthus and sugarcane, diverged during evolution from dicots. A major distinguishing feature of grass cell walls is the prevalence and structure of the hemicellulosic component xylan (1). Xylan consists of a linear β-(1,4)-D-xylopyranose (Xylp) chain. It is most commonly substituted by arabinofuranose (Araf) on the C2-or C3-position in arabinoxylan (AX), and (4-O-methyl-) glucuronosyl side chains on the C2-position in glucuronoarabinoxylan (GAX) and glucuronoxylan (GX). The primary and secondary cell walls of grasses contain substantial amounts of GAX, which is also found in primary cell walls of dicots, but at much lower abundance (1, 2). In contrast, xylan in secondary cell walls of dicots is relatively abundant but devoid of arabinosyl side chains (2). The functional significance of the different side chains in planta is largely unknown. In grasses α-(1-3)-linked arabinofuranosyl substitutions can be esterified with p-coumaric or ferulic acid, the latter forming cross-links with other (G)AX chains (3) or with lignin (4). Cross-linking of cell-wall polymers is critical in limiting the digestibility of polysaccharides for bioenergy production and animal feed. In addition, AX has a role as dietary fiber in human foods, particularly in wheat flour, where it constitutes 65-70% of the nonstarch polysaccharide (5). The degree of arabinosylation and feruloylation of AX also determines whether it occurs as soluble or insoluble dietary fiber, which confer different benefits to human health (6).In Arabidopsis thaliana (Arabidopsis), several glycosyltransferases of the GT43 and GT47 families have been shown to be involved in the biosynthesis of the xylan backbone, including IRX9, IRX10, and IRX14 (2). The only enzymes characterized so far that decorate the xylan backbone are members of the GT8 family, GUX1 and GUX2, which are required for gl...
Caenophidian snakes include the file snake genus Acrochordus and advanced colubroidean snakes that radiated mainly during the Neogene. Although caenophidian snakes are a well-supported clade, their inferred affinities, based either on molecular or morphological data, remain poorly known or controversial. Here, we provide an expanded molecular phylogenetic analysis of Caenophidia and use three non-parametric measures of support–Shimodaira-Hasegawa-Like test (SHL), Felsentein (FBP) and transfer (TBE) bootstrap measures–to evaluate the robustness of each clade in the molecular tree. That very different alternative support values are common suggests that results based on only one support value should be viewed with caution. Using a scheme to combine support values, we find 20.9% of the 1265 clades comprising the inferred caenophidian tree are unambiguously supported by both SHL and FBP values, while almost 37% are unsupported or ambiguously supported, revealing the substantial extent of phylogenetic problems within Caenophidia. Combined FBP/TBE support values show similar results, while SHL/TBE result in slightly higher combined values. We consider key morphological attributes of colubroidean cranial, vertebral and hemipenial anatomy and provide additional morphological evidence supporting the clades Colubroides, Colubriformes, and Endoglyptodonta. We review and revise the relevant caenophidian fossil record and provide a time-calibrated tree derived from our molecular data to discuss the main cladogenetic events that resulted in present-day patterns of caenophidian diversification. Our results suggest that all extant families of Colubroidea and Elapoidea composing the present-day endoglyptodont fauna originated rapidly within the early Oligocene–between approximately 33 and 28 Mya–following the major terrestrial faunal turnover known as the “Grande Coupure” and associated with the overall climate shift at the Eocene-Oligocene boundary. Our results further suggest that the caenophidian radiation originated within the Caenozoic, with the divergence between Colubroides and Acrochordidae occurring in the early Eocene, at ~ 56 Mya.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.