In the CBM (Compressed Baryonic Matter) experiment constructed at the Facility for Anti-proton and Ion Research (Fair) at GSI, Darmstadt, Germany, MRPC(Multi-gap Resistive Plate Chamber) is adopted to construct the large TOF (Time-of-Flight) system to achieve an unprecedented precision of hadron identification, benefiting from its good time resolution, relatively high efficiency and low building price. According to the particle flux rate distribution, the whole CBM-TOF wall is divided into four rate regions named Region D, C, B and A (from inner to outer). Aiming at the Region C and B where the rate ranges from 3.5 to 8.0 kHz/cm 2 , we've developed a kind of double-ended readout strip MRPC. It uses low resistive glass to keep good performance of time resolution under high-rate condition. The differential double stack structure of 2x4 gas gaps help to reduce the required high voltage to half. There are 24 strips on one counter, and each is 270mm long, 7mm wide and the interval is 3mm. Ground is placed onto the MRPC's electrode and feed through is carefully designed to match the 100Ω impedance of PADI electronics. The prototype of this strip MRPC has been tested with cosmic ray, a 98% efficiency and 60ps time resolution is gotten. In order to further examine the performance of the detector working under higher particle flux rate, the prototype has been tested in the 2014 October GSI beam time and 2015 February CERN beam time. In both beam times a relatively high rate of 1 kHz/cm 2 was obtained. The calibration is done with CBM ROOT. A couple of corrections has been considered in the calibration and analysis process (including time-walk correction, gain correction, strip alignment correction and velocity correction) to access actual counter performances such as efficiency and time resolution. An efficiency of 97% and time resolution of 48ps are obtained. All these results show that the realsize prototype is fully capable of the requirement of the CBM-TOF, and new designs such as self-sealing are modified into the strip counter prototype to obtain even better performance.
Charged hadron identification in the Compressed Baryonic Matter experiment (CBM) is realized via the Time-of-Flight method [1]. For this purpose the CBM-ToF collaboration designed a Time-of-Flight wall composed of Multi-gap Resistive Plate Chambers (MRPCs). Due to the high interaction rate in CBM of 10 MHz the key challenge is the development of high rate MRPCs above 25 kHz/cm 2 which become possible after the development of low resistive glass with extremely good quality. In this article we present the actual conceptual design of the ToF-wall which is subdivided in three parts namely the outer wall, the inner wall and the forward zone that are discussed in detail. KEYWORDS: Particle identification methods; Detector design and construction technologies and materials; Resistive-plate chambers; Instrumentation and methods for time-of-flight (TOF) spectroscopy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.