We report an experiment to generate entangled states of D-dimensional quantum systems, qudits, by using transverse spatial correlations of two parametric down-converted photons. Apertures with D slits in the arms of the twin photons define the qudit space. By manipulating the pump beam correctly, the twin photons will pass only by symmetrically opposite slits, generating entangled states between these different paths. Experimental results for qudits with D = 4 and 8 are shown. We demonstrate that the generated states are entangled states.
We show the propagation of entangled states of high-dimensional quantum
systems. The qudits states were generated using the transverse correlation of
the twin photons produced by spontaneous parametric down-conversion. Their
free-space distribution was performed at the laboratory scale and the
propagated states maintained a high-fidelity with their original form. The use
of entangled qudits allow an increase in the quantity of information that can
be transmitted and may also guarantee more privacy for communicating parties.
Therefore, studies about propagating entangled states of qudits are important
for the effort of building quantum communication networks.Comment: 5 Pages, 4 Figures, REVTeX
We review recent theoretical and experimental works where are proposed and demonstrated how to use photon pairs created by spontaneous parametric down-conversion to generate entangled states of D-dimensional quantum systems, or qudits. This is the first demonstration of high-dimensional entanglement based on the intrinsic transverse momentum entanglement of the type-II down-converted photons. The qudit space is defined by an aperture made up of an opaque screen with D slits (paths), placed in the arms of the twin photons. By manipulating the pump beam profile we can prepare different entangled states of these possible paths. We focus our attention on an important case for applications in quantum information: the maximally entangled states. Experimental results for qudits with D=4 and D=8 are shown and measuring a two-photon conditional interference, we also demonstrate the nonclassical character of the correlations.
We report an experiment to generate and propagate two entangled spatial qudits, D-dimensional quantum systems, using spontaneous parametric down-conversion. The manipulation, via pump beam, of the transverse spatial correlation between the photon pairs is explored. Inserting apertures with D-slits in the arms of the down-converted photons, we associate the qudit space with the D possible paths followed by each photon. Experimental results for qudits with D = 4 and 8 are shown. We demonstrate that the generated states cannot be classically correlated. We also show the propagation of entangled states of spatial qudits. Their free-space distribution is performed at the laboratory scale and the propagated states maintain a high fidelity with their original form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.