Atomic processes leading to asymmetric divertor detachment in KSTAR L-mode plasmas. Nuclear Fusion, 58(12), [126033]. https://doi. AbstractThe experimentally observed in/out detachment asymmetry in KSTAR L-mode plasmas with deuterium (D) fueling and carbon walls has been investigated with the SOLPS-ITER code to understand its mechanism and identify important atomic processes in the divertor region. The simulations show that the geometrical combination of a vertical, inner target with short poloidal connection from X-point to target and a much longer outer divertor leg on an inclined target lead to neutral accumulation towards the outer target, driving outer target detachment at lower upstream density than is required for the inner target. This is consistent with available Langmuir probe measurements at both target plates, although the inner target profile is poorly resolved in these plasmas and further experiments with corroborating diagnostics are required to confirm this finding. The pressure and power loss factors defined in the two-point model [1][2][3][4] of the divertor scrape-off layer (SOL) and the sources contributing to the loss factors are calculated through post-processing of the SOLPS-ITER results. The momentum losses are mainly driven by plasma-neutral interaction and the power losses by plasma-neutral interaction and carbon radiation. The presence of carbon impurities in the simulation enhances pressure and power dissipation compared to the pure D case. Carbon radiation is a strong power loss channel which cools the plasma, but its effect on the pressure balance is indirect. Reduction of the electron temperature indirectly increases the momentum loss by decreasing the static pressure and increasing the volumetric reaction rates which are responsible for the loss of momentum. As a result, the addition of carbon saturates the momentum and power losses in the flux tube at lower upstream densities, reducing the rollover threshold of upstream density. The relative strengths of the various mechanisms contributing to momentum and power loss depends on the radial distance of the SOL flux tubes from the separatrix (near/far SOL) and the target (inner/outer target). This is related to the strong D2 molecule accumulation near the outer strike point, which makes the deuterium gas density at the outer target 2-10 times higher than that at the inner target. A large portion of the recycled neutral particles from both targets reach and accumulate in the outer SOL, which is attributed in strong part to the target inclination and gap structure between the central and outboard divertors and hence to the impact of geometry. The accumulated neutrals enhance the reactions involving D2 which cause momentum and power loss.
A decade-long operation of the Korean Superconducting Tokamak Advanced Research (KSTAR) has contributed significantly to the operation of superconducting tokamak devices and the advancement of tokamak physics which will be beneficial for the ITER and K-DEMO programs. Even with limited heating capability, various conventional as well as new operating regimes have been explored and have achieved improved performance. As examples, a long pulse high-confinement mode operation with and without an edge-localized mode (ELM) crash was well over 70 and 30 s, respectively. The unique capabilities of KSTAR allowed it to improve the capability of controlling harmful instabilities, and they have been instrumental in uncovering much new physics. The highlights are that the L/H transition threshold power is sensitive to the resonant magnetic perturbation (RMP) and insensitive to non-resonant magnetic perturbation. Co-Ip offset rotation dominated by an electron channel predicted by general neoclassical toroidal viscosity theory was confirmed. Improved heat dispersal in a divertor system using three rows of rotating RMP was demonstrated and predictive control of the ELM-crash with a priori modeling was successfully tested. In magnetohydrodynamic physics, validation of the full reconnection model (i.e. q0 > 1 right after the sawtooth crash) and self-consistent validation of the anisotropic distribution of turbulence amplitude and flow in the presence of the 2/1 island with theoretical models were achieved. The turbulence amplitude induced by RMP was linearly increased with the slow RMP coil current ramp-up time (i.e. the magnetic diffusion time scale). The Dα spikes (i.e. ELM-crash amplitude) was linearly decreased with the turbulence amplitude and not correlated with the perpendicular electron flow. In the turbulence area, a non-diffusive ‘avalanche’ transport event and the role of a quiescent coherent mode in confinement were studied. To accommodate the anticipation of a higher performance of the KSTAR plasmas with the increased heating powers, a new divertor/internal interface with a full active cooling system will be implemented after a full test of the new heating (neutral beam injection II and electron cyclotron heating) and current drive (CD) (Helicon and lower hybrid CD) systems. An upgrade plan for the internal hardware, heating systems and efficient CD system may allow for a long pulse operation of higher performance plasmas at βN > 3.0 with f bs ~ 0.5 and Ti > 10 keV.
Solitary perturbations (SPs) localized both poloidally and radially are detected within ~100 μs before the partial collapse of the high pressure gradient boundary region (called pedestal) of magnetized toroidal plasma in the KSTAR tokamak device. The SP develops with a low toroidal mode number (typically unity) in the pedestal ingrained with quasi-stable edge-localized mode (QSM) which commonly appears during the inter-collapse period. The SPs have smaller mode pitch and different (often opposite) rotation velocity compared to the QSMs. Similar solitary perturbations are also frequently observed before the onset of complete pedestal collapse, suggesting a strong connection between the SP generation and the pedestal collapse.
Magnetic diagnostics for the first plasma operation in the Korea Superconducting Tokamak Advanced Research device are described. The main discussion is the feasibility studies from the magnetic flux and field measurements utilizing the superconducting poloidal field coils before the first plasma generation.
Magnetic sensors and the integrator for the magnetic field measurement have been developed for the engineering design of the KSTAR magnetic diagnostics (MDs). The frequency characteristics of a magnetic sensor (for magnetic fluctuation measurement) is investigated from the measurement of the response function of the sensor and the analysis of the equivalent electronic circuit in the frequency range of 10 kHz –15 MHz. An analog integrator, which automatically compensates a drift, is fabricated and its performance test (connected with a magnetic sensor) is carried out under a rf environment. The experimental results from the performance test of the sensor and the analog integrator are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.