Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from -9 to +26 °C MAT and from 60 to 3113 mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained <0.5% of the variation for Green tea and 5% for Rooibos tea, and was of significance only under unfavorable decomposition conditions (i.e. xeric versus mesic environments). When the data were aggregated at the biome scale, climate played a significant role on decomposition of both litter types (explaining 64% of the variation for Green tea and 72% for Rooibos tea). No significant effect of land-use on early stage litter decomposition was noted within the temperate biome. Our results indicate that multiple drivers are affecting early stage litter mass loss with litter quality being dominant. In order to be able to quantify the relative importance of the different drivers over time, long-term studies combined with experimental trials are needed.
Evaluating historical changes in the exploitation of marine organisms is a key challenge in fisheries ecology and marine conservation. In the Eastern Pacific, marine turtles were exploited for millennia before systematic monitoring began <50 years ago. Using ethnographic and historical data, we generated a detailed reconstruction of the East Pacific green sea turtle (Chelonia mydas) fishery in Mexico's Baja California peninsula from 1700 to 1990. Sea turtles from the region's important feeding areas were a staple food source from the earliest phases of human occupation, dating back at least 12,000 years. In contrast with regions such as the Caribbean, small human populations and limited market access resulted in apparently sustainable turtle harvests until the second half of the 20th century. We found that the estimated annual catches between 1960 and 1980 exceeded the estimated annual catches of the previous 250 years by an order of magnitude, leading to the collapse of the fishery and the depletion of the green turtle population. A total ban on sea turtle captures in 1990, comprehensive nesting beach protection, and significant conservation efforts resulted in increases in breeding females on nesting beaches and catch rates in scientific monitoring on main feeding grounds since the early 2000s. This provides a positive outlook for this once‐depleted population segment. Although further research is needed to evaluate current conservation status, we have identified a date, between 1950 and 1960, which can serve as a reliable temporal reference for future evaluations of historical baseline abundance in this region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.