Reverse Osmosis is the most widely used method for treating municipal solid waste landfill leachates, since it produces a permeate in compliance with reject requirements. However, the efficiency of this process at the industrial scale is limited mainly because of membrane fouling and the high osmotic pressures involved. Although lime precipitation is traditionally used to eliminate the temporary hardness of water by decarbonation, it has also been shown to be highly efficient in removing humic substances which are known to have strong fouling potential towards membranes. Our objective is to study the lime/leachate physico-chemistry, in order to determine the potential of the lime precipitation as pre-treatment for reverse osmosis. The results show that the lime treatment makes it possible (i) to act efficiently on the inorganic fraction of leachates through a decarbonation mechanism which entails massive precipitation of the carbonates under the form of CaCO(3), (ii) to eliminate by co-precipitation the high Molecular Weight (MW) organic macromolecules (>50,000 g.mol(-1)) such as humic acids, and (iii) to generate a stable residue that can be easily stored at a landfill. The reverse osmosis step will be facilitated through significant reduction of the osmotic pressures and prevention of membrane fouling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.