To predict soluble solids content (SSC) of jujube fruits, a hyperspectral imaging technique has been used for acquiring reflectance images from 200 samples in the spectral regions of 900-1700nm. Hyperspectral images of jujubes were evaluated from the regions of interest using principal component analysis (PCA) with the goal of selecting five optimal wavelengths (1034, 1109,1231,1291 and 1461nm). Prediction model of SSC (Rp=0.9027, RMSEP=1.9845) were built based on BP neural network. This research has demonstrated the feasibility of implementing hyperspectral imaging technique for sorting jujube fruit for SSC to enhance the product quality and marketability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.