Development of coherent structures in the separated shear layer and wake of an airfoil in low-Reynolds-number flows was studied experimentally for a range of airfoil chord Reynolds numbers, 55 × 103 ≤ Rec ≤ 210 × 103, and three angles of attack, α = 0°, 5° and 10°. To illustrate the effect of separated shear layer development on the characteristics of coherent structures, experiments were conducted for two flow regimes common to airfoil operation at low Reynolds numbers: (i) boundary layer separation without reattachment and (ii) separation bubble formation. The results demonstrate that roll-up vortices form in the separated shear layer due to the amplification of natural disturbances, and these structures play a key role in flow transition to turbulence. The final stage of transition in the separated shear layer, associated with the growth of a sub-harmonic component of fundamental disturbances, is linked to the merging of the roll-up vortices. Turbulent wake vortex shedding is shown to occur for both flow regimes investigated. Each of the two flow regimes produces distinctly different characteristics of the roll-up and wake vortices. The study focuses on frequency scaling of the investigated coherent structures and the effect of flow regime on the frequency scaling. Analysis of the results and available data from previous experiments shows that the fundamental frequency of the shear layer vortices exhibits a power law dependency on the Reynolds number for both flow regimes. In contrast, the wake vortex shedding frequency is shown to vary linearly with the Reynolds number. An alternative frequency scaling is proposed, which results in a good collapse of experimental data across the investigated range of Reynolds numbers.
Mitigation of preferential concentration of small inertial particles in stationary isotropic turbulence using electrical and gravitational body forces Phys. Fluids 24, 073301 (2012) Axisymmetric intrusions in two-layer and uniformly stratified environments with and without rotation Phys. Fluids 24, 036603 (2012) Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold Phys. Fluids 24, 025102 (2012) Maximizing dissipation in a turbulent shear flow by optimal control of its initial state Phys. Fluids 23, 045105 (2011) A stochastic model of coherent structures for particle deposition in turbulent flows Phys. Fluids 20, 053303 (2008) Additional information on Phys. Fluids Boundary layer and turbulent wake development for a NACA 0025 airfoil at low Reynolds numbers was studied experimentally. Wind tunnel experiments were carried out for a range of Reynolds numbers and three angles of attack. Laminar boundary layer separation occurs on the upper surface of the airfoil for all Reynolds numbers and angles of attack examined. Two flow regimes are investigated ͑i͒ boundary layer separation without reattachment and ͑ii͒ separation bubble formation. The results suggest that coherent structures form in the separated flow region and the wake of the airfoil for both flow regimes. The formation of the roll-up vortices in the separated shear layer is linked to inviscid spatial growth of disturbances and is attributed to the Kelvin-Helmholtz instability. Linear stability theory can be employed to adequately describe the salient characteristics of such vortices and the initial stage of the separated shear layer transition. The development of the roll-up vortices leads to boundary layer transition, and the vortices break down during the transition process. Vortex shedding also occurs in the airfoil wake and vortices form in the near-wake region. It is shown that the boundary layer behavior has a profound effect on the identified coherent structures, and each of the two flow regimes is associated with distinctly different vortex shedding characteristics.
A novel, digital, hot-wire anemometer technique for the simultaneous measurement of the instantaneous streamwise and lateral velocity fields in high-intensity turbulent flows is discussed. It involves the use of a three-wire probe comprising two 45° slanted hot wires and a normal hot wire. A comprehensive and systematic examination of several factors that can affect the fidelity of the streamwise and lateral velocity waveforms is developed to assess the performance of the new technique as well as hot-wire systems generally. These factors are: (i) rectification, which stems from the inherent insensitivity of hot wires to the direction of the instantaneous (total) velocity vector in a turbulent flow; (ii) spanwise velocity fluctuations; (iii) axial cooling of hot wires; (iv) unpredictable variations in one of four hot-wire calibration parameters; (v) random hot-wire calibration errors; (vi) spanwise separation of the hot wires. Relevant hot-wire anemometer-response equations relating instantaneous anemometer output voltages to instantaneous flow velocities were established on the basis of extensive voltage-velocity calibration data pertaining to hot wires orientated with respect to the calibration flow velocity at various yaw and pitch angles ranging from 0° to 90°. Simulated Gaussian (streamwise, lateral and spanwise) velocity fields appropriate to flows with turbulence intensity levels varying between 5 and 80% and Reynolds shear-stress coefficients varying between 0.1 and 0.5 were generated by means of a digital computer, and the associated anemometer-voltage signals computed in accordance with the response equations subject to different combinations of the first four of the aforementioned factors. In order to take into account the effects of the last two factors, viz calibration errors and spanwise wire separation, uncorrelated Gaussian ‘noise’ fluctuations were superimposed on the above voltage signals. Estimates of the known (simulated) streamwise and lateral velocity signals were then determined by simultaneous solution of (a) the actual instantaneous response equations, (b) approximate versions of them, and (c) linearized versions of them. The results indicate that reasonably accurate estimates of velocity signals from a turbulent flow can be obtained by means of conventional hot-wire anemometer techniques – which assume that anemometer voltage fluctuations are linear functions of corresponding velocity fluctuations – only if the turbulent intensity level of the flow does not exceed about 20%. In marked contrast, the 3-wire anemometer technique introduced here can be used to measure streamwise and lateral velocity signals simultaneously with a high degree of accuracy for turbulence-intensity levels of up to 40%. In addition, this technique is capable of yielding high-fidelity streamwise velocity waveforms for levels in excess of 70%.
How to cite TSpace items Always cite the published version, so the author(s) will receive recognition through services that track citation counts, e.g. Scopus. If you need to cite the page number of the author manuscript from TSpace because you cannot access the published version, then cite the TSpace version in addition to the published version using the permanent URI (handle) found on the record page. This article was made openly accessible by U of T Faculty. Please tell us how this access benefits you. Your story matters.
The boundary-layer separation and wake structure of a NACA 0025 airfoil and the effect of external excitations in presence of structural vibrations on airfoil performance were studied experimentally. Wind tunnel experiments were carried out for three Reynolds numbers and three angles of attack, involving hot-wire measurements and complementary surface flow visualization. The results establish that external acoustic excitation at a particular frequency and appropriate amplitude suppresses or reduces the separation region and decreases the airfoil wake, i.e., produces an increase of the lift and∕or decrease of the drag. The acoustic excitation also alters characteristics of the vortical structures in the wake, decreasing the vortex length scale and coherency. Optimum excitation frequencies were found to correlate with the fundamental frequencies of the naturally amplified disturbances in the separated shear layer. The results suggest that acoustic waves play a dominant role in exciting the separated shear layer of the airfoil. Moreover, low-frequency structural vibrations are found to have a significant effect on airfoil performance, as they enhance the sound pressure levels within the test section.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.